
The increase in length on stretching a wire is 0.05%. If its poisson's ratio is 0.4, then its diameter:
(A) Reduce by 0.02%
(B) Reduce by 0.1%
(C) Reduce by 0.03%
(D) Decrease by 0.4%
Answer
232.8k+ views
Hint: The Poisson’s ratio for a wire is given. When the wire is stretched, the length increases by 0.05%. Now by definition, we know the Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$. Longitudinal strain is given, so we can find the lateral strain by substituting the given values.
Formula used:
Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$ $ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{\dfrac{{\Delta l}}{l}}}$
Complete step by step solution:
Let D and l be the diameter and length of the given wire respectively.
When the wire is stretched, the length increases by 0.05%.
We know, the Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$
$ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{\dfrac{{\Delta l}}{l}}} = 0.4$
Here, $\dfrac{{\Delta l}}{l}$= 0.05
$ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{0.05}} = 0.4$
$ \Rightarrow \dfrac{{\Delta D}}{D} = 0.05 \times 0.4 = 0.02$
Therefore, the correct answer is option (A), reduced by 0.02%.
Note: If the length of the wire increases on stretching, the diameter will decrease simultaneously. However, the ratio of lateral and longitudinal strain is always a constant for a material and is defined as the Poisson’s Ratio. It is denoted by the letter $\sigma $.
Formula used:
Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$ $ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{\dfrac{{\Delta l}}{l}}}$
Complete step by step solution:
Let D and l be the diameter and length of the given wire respectively.
When the wire is stretched, the length increases by 0.05%.
We know, the Poisson’s ratio $\sigma = \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}}$
$ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{\dfrac{{\Delta l}}{l}}} = 0.4$
Here, $\dfrac{{\Delta l}}{l}$= 0.05
$ \Rightarrow \sigma = \dfrac{{\dfrac{{\Delta D}}{D}}}{{0.05}} = 0.4$
$ \Rightarrow \dfrac{{\Delta D}}{D} = 0.05 \times 0.4 = 0.02$
Therefore, the correct answer is option (A), reduced by 0.02%.
Note: If the length of the wire increases on stretching, the diameter will decrease simultaneously. However, the ratio of lateral and longitudinal strain is always a constant for a material and is defined as the Poisson’s Ratio. It is denoted by the letter $\sigma $.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

