
The increase in energy of a metal bar of length ‘L’ and cross sectional area ‘A’ when compressed with a load ‘M’ along its length is: (Y= young modulus of the material of metal bar)
A) $\dfrac{{FL}}{{2AY}}$
B) $\dfrac{{{F^2}L}}{{2AY}}$
C) $\dfrac{{FL}}{{AY}}$
D) $\dfrac{{{F^2}{L^2}}}{{2AY}}$
Answer
219.9k+ views
Hint: For the above question Young’s modulus concept is as follows:
Young Modulus is given by the formula:
$Y = \dfrac{\text{longitudinal stress}}{{strain}}$
$Y = \dfrac{{\dfrac{F}{A}}}{{\dfrac{{\Delta L}}{L}}}$ , F is the force, A is the area and l is the length and $\Delta L$ is the change in length.
Energy, U is given by $ = \dfrac{1}{2} \times stress \times strain \times volume$
Using the above relations we will calculate the energy of the metal bar.
Complete step by step solution:
Young’s Modulus is a measure of the ability of a material to withstand changes in length when under lengthwise tension or compression .Young’s modulus is the ratio of longitudinal stress to strain.SI unit of Young’s modulus is Pascal.
Now let’s derive the equation for the energy of the metal bar
U$ = \dfrac{1}{2} \times stress \times strain \times volume$(equation for energy)
Young’s modulus is given by:
$stress = \dfrac{F}{A}$ (F is force and A is the area)
Then, strain is given by:
$strain = \dfrac{{stress}}{Y} = \dfrac{F}{{AY}}$ (Y is young modulus here)
Volume of the metal bar is given: AL.
Therefore, energy of the metal rod is given as:
$U = \dfrac{1}{2} \times \dfrac{F}{A} \times (\dfrac{F}{{AY}})AL$ .....................1
Now, we will cancel the common terms in equation 1 to bring out the formula for energy.
$
\Rightarrow U = \dfrac{1}{2} \times \dfrac{F}{A} \times (\dfrac{F}{Y})L \\
\Rightarrow U = \dfrac{1}{2} \times \dfrac{{{F^2}L}}{{AY}} \\
$
Note: Application of Young’s Modulus in our day to day life is in designing a bridge ,one has to keep in mind the traffic load, weight of the bridge ,force of wind .Bridge should also not bend too much nor break. Another application is heavy load lifted by the crane, which depends on the weight of the load and the stress and strain applied by the crane because pressure is equal to the force upon the area.
Young Modulus is given by the formula:
$Y = \dfrac{\text{longitudinal stress}}{{strain}}$
$Y = \dfrac{{\dfrac{F}{A}}}{{\dfrac{{\Delta L}}{L}}}$ , F is the force, A is the area and l is the length and $\Delta L$ is the change in length.
Energy, U is given by $ = \dfrac{1}{2} \times stress \times strain \times volume$
Using the above relations we will calculate the energy of the metal bar.
Complete step by step solution:
Young’s Modulus is a measure of the ability of a material to withstand changes in length when under lengthwise tension or compression .Young’s modulus is the ratio of longitudinal stress to strain.SI unit of Young’s modulus is Pascal.
Now let’s derive the equation for the energy of the metal bar
U$ = \dfrac{1}{2} \times stress \times strain \times volume$(equation for energy)
Young’s modulus is given by:
$stress = \dfrac{F}{A}$ (F is force and A is the area)
Then, strain is given by:
$strain = \dfrac{{stress}}{Y} = \dfrac{F}{{AY}}$ (Y is young modulus here)
Volume of the metal bar is given: AL.
Therefore, energy of the metal rod is given as:
$U = \dfrac{1}{2} \times \dfrac{F}{A} \times (\dfrac{F}{{AY}})AL$ .....................1
Now, we will cancel the common terms in equation 1 to bring out the formula for energy.
$
\Rightarrow U = \dfrac{1}{2} \times \dfrac{F}{A} \times (\dfrac{F}{Y})L \\
\Rightarrow U = \dfrac{1}{2} \times \dfrac{{{F^2}L}}{{AY}} \\
$
Note: Application of Young’s Modulus in our day to day life is in designing a bridge ,one has to keep in mind the traffic load, weight of the bridge ,force of wind .Bridge should also not bend too much nor break. Another application is heavy load lifted by the crane, which depends on the weight of the load and the stress and strain applied by the crane because pressure is equal to the force upon the area.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

