
The hybridization of carbon atoms in ${\text{C - C}}$ single bond of is:
(A) ${\text{s}}{{\text{p}}^{\text{3}}}{\text{ - s}}{{\text{p}}^{\text{3}}}$
(B) ${\text{s}}{{\text{p}}^2}{\text{ - s}}{{\text{p}}^{\text{3}}}$
(C) ${\text{sp - s}}{{\text{p}}^2}$
(D) ${\text{s}}{{\text{p}}^{\text{3}}}{\text{ - sp}}$
Answer
221.1k+ views
Hint: (1)Hybridization refers to the intermixing of two or more atomic orbitals which are of nearly the same energies to give rise to the formation of new orbitals called hybrid orbitals.
(2) For the carbon atom, hybridization takes place in three ways: ${\text{s}}{{\text{p}}^{\text{3}}}$ hybridization, ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridization and sp hybridization.
Complete step-by-step answer: The given compound is .
We need to find out the hybridization of the carbon atoms in the carbon-carbon single bond of the given compound.
When the 2s and the three 2p orbitals of carbon, viz. the 2px, 2py and 2pz orbitals get intermixed, four new orbitals called the ${\text{s}}{{\text{p}}^{\text{3}}}$ hybrid orbitals will be formed. An ${\text{s}}{{\text{p}}^{\text{3}}}$ hybridIzed orbital has s-character 25% and p-character 75%.
In ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridization, the 2s orbital and two of the three 2p orbitals of carbon get intermixed, while the third 2p orbital remains unchanged. A ${\text{s}}{{\text{p}}^{\text{2}}}$ hybrid orbital has 33% s-character and 66% p-character. In sp hybridization, the 2s orbital and one of the three 2p orbitals of carbon get intermixed, while the remaining two 2p orbitals are left unchanged.
Let us consider the carbon atom of the ${\text{C - C}}$ single bond which is attached to the triple bond. Since carbon has 4 valence electrons and double or triple bonds don’t take part in hybridization, thus, this carbon is forming two bond pairs, viz., one with the other triple bonded carbon and the other with the single bonded carbon $\left( {{\text{C - C}}} \right)$. Also, there are no lone pairs on this carbon. So it is sp hybridized.
Now, let us consider the carbon atom of the ${\text{C - C}}$ single bond which is attached to the double bond. Since carbon has 4 valence electrons and double or triple bonds don’t take part in hybridization, thus, this carbon is forming three bond pairs, viz., one ${\text{C - H}}$ bond pair, one ${\text{C - C}}$ bond pair and one ${\text{C = C}}{{\text{H}}_2}$ bond pair. Also, there are no lone pairs. So this carbon is ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridized.
Out of the given options, the option (c) is correct.
Note: A carbon atom bonded to other atoms by two sigma and two pi bonds (e.g. alkynes) is always sp hybridized. A carbon atom bonded to other atoms by three sigma and one pi bond will always be ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridized.
(2) For the carbon atom, hybridization takes place in three ways: ${\text{s}}{{\text{p}}^{\text{3}}}$ hybridization, ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridization and sp hybridization.
Complete step-by-step answer: The given compound is .
We need to find out the hybridization of the carbon atoms in the carbon-carbon single bond of the given compound.
When the 2s and the three 2p orbitals of carbon, viz. the 2px, 2py and 2pz orbitals get intermixed, four new orbitals called the ${\text{s}}{{\text{p}}^{\text{3}}}$ hybrid orbitals will be formed. An ${\text{s}}{{\text{p}}^{\text{3}}}$ hybridIzed orbital has s-character 25% and p-character 75%.
In ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridization, the 2s orbital and two of the three 2p orbitals of carbon get intermixed, while the third 2p orbital remains unchanged. A ${\text{s}}{{\text{p}}^{\text{2}}}$ hybrid orbital has 33% s-character and 66% p-character. In sp hybridization, the 2s orbital and one of the three 2p orbitals of carbon get intermixed, while the remaining two 2p orbitals are left unchanged.
Let us consider the carbon atom of the ${\text{C - C}}$ single bond which is attached to the triple bond. Since carbon has 4 valence electrons and double or triple bonds don’t take part in hybridization, thus, this carbon is forming two bond pairs, viz., one with the other triple bonded carbon and the other with the single bonded carbon $\left( {{\text{C - C}}} \right)$. Also, there are no lone pairs on this carbon. So it is sp hybridized.
Now, let us consider the carbon atom of the ${\text{C - C}}$ single bond which is attached to the double bond. Since carbon has 4 valence electrons and double or triple bonds don’t take part in hybridization, thus, this carbon is forming three bond pairs, viz., one ${\text{C - H}}$ bond pair, one ${\text{C - C}}$ bond pair and one ${\text{C = C}}{{\text{H}}_2}$ bond pair. Also, there are no lone pairs. So this carbon is ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridized.
Out of the given options, the option (c) is correct.
Note: A carbon atom bonded to other atoms by two sigma and two pi bonds (e.g. alkynes) is always sp hybridized. A carbon atom bonded to other atoms by three sigma and one pi bond will always be ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridized.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

