
The height of a cone is 21 cm. Find the area of the base if the slant height is 28 cm.
Answer
219.6k+ views
Hint: Here, we will use the formula of slant height, \[l = \sqrt {{r^2} + {h^2}} \], where \[r\] is the radius of a cone and \[h\] is the height of the cone to find the radius of the base of a cone. Then we will substitute the value of radius in the formula of area of base of cone, \[\pi {r^2}\] to find the required value.
Complete step by step answer:
Given that the height \[h\] of a cone is 21 cm and the slant height \[l\] of a cone is 28 cm.
Let the radius of a cone is \[r\].
We know that the slant height is \[l = \sqrt {{r^2} + {h^2}} \], where \[r\] is the radius of a cone and \[h\] is the height of a cone.
Substituting the values of \[r\]and \[l\] in the above formula of \[l\], we get
\[
\Rightarrow 28 = \sqrt {{r^2} + {{21}^2}} \\
\Rightarrow {28^2} = {r^2} + {21^2} \\
\Rightarrow 784 = {r^2} + 441 \\
\]
Subtracting the above equation by 441 on each of the sides, we get
\[
\Rightarrow 784 - 441 = {r^2} + 441 - 441 \\
\Rightarrow 343 = {r^2} \\
\]
Taking the square root on both sides in the above equation, we get
\[
\Rightarrow r = \pm \sqrt {343} \\
\Rightarrow r = \pm 7\sqrt 7 {\text{ cm}} \\
\]
Since the value of the radius can never be negative, so negative value of \[r\] is discarded.
Thus, the radius of the base of a cone is \[7\sqrt 7 \] cm.
We know that the area of the base of a cone is \[\pi {r^2}\], where \[r\]is the radius of the cone.
Substituting the above value of \[r\] in \[\pi {r^2}\] to find the area of the base of cone, we get
\[
{\text{Area of base of a cone}} = \pi {\left( {7\sqrt 7 } \right)^2} \\
= \pi \left( {49 \times 7} \right) \\
\]
Using the value of \[\pi \] in the above equation, we get
\[
\dfrac{{22}}{7}\left( {49 \times 7} \right) = 22 \times 49 \\
= 1078{\text{ c}}{{\text{m}}^2} \\
\]
Thus, the area of the base of a cone is 1078 cm\[^2\].
Note: In this question, students should know the formulae of the slant height of cone, \[l = \sqrt {{r^2} + {h^2}} \], where \[r\] is the radius of a cone and \[h\] is height of cone and the area of the cone, area of the base of a cone is \[\pi {r^2}\], where \[r\]is the radius of the cone properly. Also, we are supposed to write the values properly to avoid any miscalculation.
Complete step by step answer:
Given that the height \[h\] of a cone is 21 cm and the slant height \[l\] of a cone is 28 cm.
Let the radius of a cone is \[r\].
We know that the slant height is \[l = \sqrt {{r^2} + {h^2}} \], where \[r\] is the radius of a cone and \[h\] is the height of a cone.
Substituting the values of \[r\]and \[l\] in the above formula of \[l\], we get
\[
\Rightarrow 28 = \sqrt {{r^2} + {{21}^2}} \\
\Rightarrow {28^2} = {r^2} + {21^2} \\
\Rightarrow 784 = {r^2} + 441 \\
\]
Subtracting the above equation by 441 on each of the sides, we get
\[
\Rightarrow 784 - 441 = {r^2} + 441 - 441 \\
\Rightarrow 343 = {r^2} \\
\]
Taking the square root on both sides in the above equation, we get
\[
\Rightarrow r = \pm \sqrt {343} \\
\Rightarrow r = \pm 7\sqrt 7 {\text{ cm}} \\
\]
Since the value of the radius can never be negative, so negative value of \[r\] is discarded.
Thus, the radius of the base of a cone is \[7\sqrt 7 \] cm.
We know that the area of the base of a cone is \[\pi {r^2}\], where \[r\]is the radius of the cone.
Substituting the above value of \[r\] in \[\pi {r^2}\] to find the area of the base of cone, we get
\[
{\text{Area of base of a cone}} = \pi {\left( {7\sqrt 7 } \right)^2} \\
= \pi \left( {49 \times 7} \right) \\
\]
Using the value of \[\pi \] in the above equation, we get
\[
\dfrac{{22}}{7}\left( {49 \times 7} \right) = 22 \times 49 \\
= 1078{\text{ c}}{{\text{m}}^2} \\
\]
Thus, the area of the base of a cone is 1078 cm\[^2\].
Note: In this question, students should know the formulae of the slant height of cone, \[l = \sqrt {{r^2} + {h^2}} \], where \[r\] is the radius of a cone and \[h\] is height of cone and the area of the cone, area of the base of a cone is \[\pi {r^2}\], where \[r\]is the radius of the cone properly. Also, we are supposed to write the values properly to avoid any miscalculation.
Recently Updated Pages
The angle of depression of the top and the bottom of class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The side BC of a triangle ABC is bisected at D O is class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

JEE Main Marks vs Percentile vs Rank 2026: Calculate Percentile and Rank Using Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

