
The heavier block is an Atwood machine that has a mass twice that of the lighter one. The tension in the string is 16.0N when the system is set into the motion. Find the decrease in the gravitational potential energy during the first second after the system is released from rest.
(A) 19.6 J
(B) 29 J
(C) 35 J
(D) 10 J
Answer
124.2k+ views
Hint We should know that potential energy is defined as the energy that is stored in any system. The potential energy is defined as the measurement of the amount of work done by the system. The potential energy is altered usually on the basis of the equilibrium position and also the virtue of the position of the system.
Complete step by step answer
We should know that,
Tension is denoted by T which is 16.0 N.
Now,
$T - 2mg + 2ma = 0...........(i)$
$T - mg - ma = 0..........(ii)$
From the equations we can say that:
$3ma - mg = 0$
Now we have to evaluate to get:
$g = 3a$
$\Rightarrow a = \dfrac{g}{3}$
Now we have to put the value of g in the equation (ii) to get:
$T - 3ma - ma = 0$
$\Rightarrow T = 4ma$
$\Rightarrow a = \dfrac{T}{{4m}}$
Now, from the equation of motion we get that at t = 1:
$s = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow s = 0 + \dfrac{1}{2} \times \dfrac{T}{{4m}} \times {(1)^2}$
So, we have to find the value of s as:
$s = \dfrac{{16}}{{8m}}$
$\Rightarrow s = \dfrac{2}{m}$
Thus, we can say that change in the height of the block will be:
$\Delta h = s$
The net mass is given as:
$2m - m = m$
So, the decrease of the potential energy is given as:
$P.E. = mg\Delta h$
$\Rightarrow P.E. = m \times 9.8 \times \dfrac{2}{m}$
$\Rightarrow P.E. = 19.6J$
Hence, the decreased potential energy is 19.6 J. So,
the correct answer is given as option A.
Note It should also be known to us that potential energy is the energy which is held against an object because of the position which is relative to the other objects, and then stress itself, the electric charge and various other factors.
Complete step by step answer
We should know that,
Tension is denoted by T which is 16.0 N.
Now,
$T - 2mg + 2ma = 0...........(i)$
$T - mg - ma = 0..........(ii)$
From the equations we can say that:
$3ma - mg = 0$
Now we have to evaluate to get:
$g = 3a$
$\Rightarrow a = \dfrac{g}{3}$
Now we have to put the value of g in the equation (ii) to get:
$T - 3ma - ma = 0$
$\Rightarrow T = 4ma$
$\Rightarrow a = \dfrac{T}{{4m}}$
Now, from the equation of motion we get that at t = 1:
$s = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow s = 0 + \dfrac{1}{2} \times \dfrac{T}{{4m}} \times {(1)^2}$
So, we have to find the value of s as:
$s = \dfrac{{16}}{{8m}}$
$\Rightarrow s = \dfrac{2}{m}$
Thus, we can say that change in the height of the block will be:
$\Delta h = s$
The net mass is given as:
$2m - m = m$
So, the decrease of the potential energy is given as:
$P.E. = mg\Delta h$
$\Rightarrow P.E. = m \times 9.8 \times \dfrac{2}{m}$
$\Rightarrow P.E. = 19.6J$
Hence, the decreased potential energy is 19.6 J. So,
the correct answer is given as option A.
Note It should also be known to us that potential energy is the energy which is held against an object because of the position which is relative to the other objects, and then stress itself, the electric charge and various other factors.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
