
The heavier block is an Atwood machine that has a mass twice that of the lighter one. The tension in the string is 16.0N when the system is set into the motion. Find the decrease in the gravitational potential energy during the first second after the system is released from rest.
(A) 19.6 J
(B) 29 J
(C) 35 J
(D) 10 J
Answer
217.8k+ views
Hint We should know that potential energy is defined as the energy that is stored in any system. The potential energy is defined as the measurement of the amount of work done by the system. The potential energy is altered usually on the basis of the equilibrium position and also the virtue of the position of the system.
Complete step by step answer
We should know that,
Tension is denoted by T which is 16.0 N.
Now,
$T - 2mg + 2ma = 0...........(i)$
$T - mg - ma = 0..........(ii)$
From the equations we can say that:
$3ma - mg = 0$
Now we have to evaluate to get:
$g = 3a$
$\Rightarrow a = \dfrac{g}{3}$
Now we have to put the value of g in the equation (ii) to get:
$T - 3ma - ma = 0$
$\Rightarrow T = 4ma$
$\Rightarrow a = \dfrac{T}{{4m}}$
Now, from the equation of motion we get that at t = 1:
$s = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow s = 0 + \dfrac{1}{2} \times \dfrac{T}{{4m}} \times {(1)^2}$
So, we have to find the value of s as:
$s = \dfrac{{16}}{{8m}}$
$\Rightarrow s = \dfrac{2}{m}$
Thus, we can say that change in the height of the block will be:
$\Delta h = s$
The net mass is given as:
$2m - m = m$
So, the decrease of the potential energy is given as:
$P.E. = mg\Delta h$
$\Rightarrow P.E. = m \times 9.8 \times \dfrac{2}{m}$
$\Rightarrow P.E. = 19.6J$
Hence, the decreased potential energy is 19.6 J. So,
the correct answer is given as option A.
Note It should also be known to us that potential energy is the energy which is held against an object because of the position which is relative to the other objects, and then stress itself, the electric charge and various other factors.
Complete step by step answer
We should know that,
Tension is denoted by T which is 16.0 N.
Now,
$T - 2mg + 2ma = 0...........(i)$
$T - mg - ma = 0..........(ii)$
From the equations we can say that:
$3ma - mg = 0$
Now we have to evaluate to get:
$g = 3a$
$\Rightarrow a = \dfrac{g}{3}$
Now we have to put the value of g in the equation (ii) to get:
$T - 3ma - ma = 0$
$\Rightarrow T = 4ma$
$\Rightarrow a = \dfrac{T}{{4m}}$
Now, from the equation of motion we get that at t = 1:
$s = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow s = 0 + \dfrac{1}{2} \times \dfrac{T}{{4m}} \times {(1)^2}$
So, we have to find the value of s as:
$s = \dfrac{{16}}{{8m}}$
$\Rightarrow s = \dfrac{2}{m}$
Thus, we can say that change in the height of the block will be:
$\Delta h = s$
The net mass is given as:
$2m - m = m$
So, the decrease of the potential energy is given as:
$P.E. = mg\Delta h$
$\Rightarrow P.E. = m \times 9.8 \times \dfrac{2}{m}$
$\Rightarrow P.E. = 19.6J$
Hence, the decreased potential energy is 19.6 J. So,
the correct answer is given as option A.
Note It should also be known to us that potential energy is the energy which is held against an object because of the position which is relative to the other objects, and then stress itself, the electric charge and various other factors.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

