The half-life of the isotope ${ }_{11} \mathrm{Na}^{24}$ is $15 \mathrm{hrs}$. How much time does it take for $\dfrac{7}{8}$ th of a sample of this isotope to decay
A. $75\, \mathrm{hrs}$
B. $65\, \mathrm{hrs}$
C. $55\, \mathrm{hrs}$
D. $45\, \mathrm{hrs}$
Answer
Verified
116.1k+ views
Hint:The Half life of the radioactive sample is the time taken by the sample to reach half of the original sample. In this problem half-life of the element is given and we have to find the time taken for $\dfrac{7}{8}$ th of a sample to decay. Therefore, we can use the direct equation connecting all these factors to find the solution.
Formula used:
We can use the following formula to calculate the time taken for $\dfrac{7}{8} t h$ of a sample to decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $\mathrm{t}$ time.
$N_{0}$ is the original amount of sample.
$\mathrm{T}$ is the half-life of the isotope.
Complete step by step solution:
Here in this question half-life of the isotope ${ }_{11} N a^{24}$ is given as $15 \mathrm{hrs}$. After time the $\dfrac{7}{8}$ th of the sample is decayed. We have to find the time taken for this decay. To use the given we have to find how much sample is remaining now.
If we consider the amount of original sample present as 1,then
Undecayed sample, $N=1-\dfrac{7}{8}=\dfrac{1}{8}$
And $\mathrm{T}=15 \mathrm{hrs}$
Therefore,
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}} \Rightarrow \dfrac{1}{8}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{15}}$
Taking natural logarithm, we get:
$\ln \dfrac{1}{8}=\dfrac{t}{15} \ln \dfrac{1}{2}$
On further solving we get:
$\dfrac{t}{15}=\dfrac{\ln \dfrac{1}{8}}{\ln \dfrac{1}{2}} \\
\Rightarrow \dfrac{t}{15}=3 \\
\therefore t=15 \times 3=45 \text { hours }$
That is, if half-life of a sample is $15 \mathrm{hrs}$, then time taken for $\dfrac{7}{8}$ of the sample to decay is $45 \mathrm{hrs}$.
Therefore, the answer is option D.
Notes: One of the possible mistakes most people make is they consider the amount of sample as $\dfrac{7}{8}$. But actually, $\mathrm{N}$ in the equation stands for the remaining amount of sample. We approximate the original amount of sample to 1 since here fraction is considered. If the amount was given in percentage, we take the original amount as 100.
Formula used:
We can use the following formula to calculate the time taken for $\dfrac{7}{8} t h$ of a sample to decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $\mathrm{t}$ time.
$N_{0}$ is the original amount of sample.
$\mathrm{T}$ is the half-life of the isotope.
Complete step by step solution:
Here in this question half-life of the isotope ${ }_{11} N a^{24}$ is given as $15 \mathrm{hrs}$. After time the $\dfrac{7}{8}$ th of the sample is decayed. We have to find the time taken for this decay. To use the given we have to find how much sample is remaining now.
If we consider the amount of original sample present as 1,then
Undecayed sample, $N=1-\dfrac{7}{8}=\dfrac{1}{8}$
And $\mathrm{T}=15 \mathrm{hrs}$
Therefore,
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}} \Rightarrow \dfrac{1}{8}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{15}}$
Taking natural logarithm, we get:
$\ln \dfrac{1}{8}=\dfrac{t}{15} \ln \dfrac{1}{2}$
On further solving we get:
$\dfrac{t}{15}=\dfrac{\ln \dfrac{1}{8}}{\ln \dfrac{1}{2}} \\
\Rightarrow \dfrac{t}{15}=3 \\
\therefore t=15 \times 3=45 \text { hours }$
That is, if half-life of a sample is $15 \mathrm{hrs}$, then time taken for $\dfrac{7}{8}$ of the sample to decay is $45 \mathrm{hrs}$.
Therefore, the answer is option D.
Notes: One of the possible mistakes most people make is they consider the amount of sample as $\dfrac{7}{8}$. But actually, $\mathrm{N}$ in the equation stands for the remaining amount of sample. We approximate the original amount of sample to 1 since here fraction is considered. If the amount was given in percentage, we take the original amount as 100.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key
Effect of Temperature on Resistance - Important Concepts and Tips for JEE
JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Young's Double Slit Experiment Derivation
Current Loop as Magnetic Dipole and Its Derivation for JEE
When Barium is irradiated by a light of lambda 4000oversetomathopA class 12 physics JEE_Main