
The half-life of the isotope ${ }_{11} \mathrm{Na}^{24}$ is $15 \mathrm{hrs}$. How much time does it take for $\dfrac{7}{8}$ th of a sample of this isotope to decay
A. $75\, \mathrm{hrs}$
B. $65\, \mathrm{hrs}$
C. $55\, \mathrm{hrs}$
D. $45\, \mathrm{hrs}$
Answer
232.8k+ views
Hint:The Half life of the radioactive sample is the time taken by the sample to reach half of the original sample. In this problem half-life of the element is given and we have to find the time taken for $\dfrac{7}{8}$ th of a sample to decay. Therefore, we can use the direct equation connecting all these factors to find the solution.
Formula used:
We can use the following formula to calculate the time taken for $\dfrac{7}{8} t h$ of a sample to decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $\mathrm{t}$ time.
$N_{0}$ is the original amount of sample.
$\mathrm{T}$ is the half-life of the isotope.
Complete step by step solution:
Here in this question half-life of the isotope ${ }_{11} N a^{24}$ is given as $15 \mathrm{hrs}$. After time the $\dfrac{7}{8}$ th of the sample is decayed. We have to find the time taken for this decay. To use the given we have to find how much sample is remaining now.
If we consider the amount of original sample present as 1,then
Undecayed sample, $N=1-\dfrac{7}{8}=\dfrac{1}{8}$
And $\mathrm{T}=15 \mathrm{hrs}$
Therefore,
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}} \Rightarrow \dfrac{1}{8}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{15}}$
Taking natural logarithm, we get:
$\ln \dfrac{1}{8}=\dfrac{t}{15} \ln \dfrac{1}{2}$
On further solving we get:
$\dfrac{t}{15}=\dfrac{\ln \dfrac{1}{8}}{\ln \dfrac{1}{2}} \\
\Rightarrow \dfrac{t}{15}=3 \\
\therefore t=15 \times 3=45 \text { hours }$
That is, if half-life of a sample is $15 \mathrm{hrs}$, then time taken for $\dfrac{7}{8}$ of the sample to decay is $45 \mathrm{hrs}$.
Therefore, the answer is option D.
Notes: One of the possible mistakes most people make is they consider the amount of sample as $\dfrac{7}{8}$. But actually, $\mathrm{N}$ in the equation stands for the remaining amount of sample. We approximate the original amount of sample to 1 since here fraction is considered. If the amount was given in percentage, we take the original amount as 100.
Formula used:
We can use the following formula to calculate the time taken for $\dfrac{7}{8} t h$ of a sample to decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $\mathrm{t}$ time.
$N_{0}$ is the original amount of sample.
$\mathrm{T}$ is the half-life of the isotope.
Complete step by step solution:
Here in this question half-life of the isotope ${ }_{11} N a^{24}$ is given as $15 \mathrm{hrs}$. After time the $\dfrac{7}{8}$ th of the sample is decayed. We have to find the time taken for this decay. To use the given we have to find how much sample is remaining now.
If we consider the amount of original sample present as 1,then
Undecayed sample, $N=1-\dfrac{7}{8}=\dfrac{1}{8}$
And $\mathrm{T}=15 \mathrm{hrs}$
Therefore,
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}} \Rightarrow \dfrac{1}{8}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{15}}$
Taking natural logarithm, we get:
$\ln \dfrac{1}{8}=\dfrac{t}{15} \ln \dfrac{1}{2}$
On further solving we get:
$\dfrac{t}{15}=\dfrac{\ln \dfrac{1}{8}}{\ln \dfrac{1}{2}} \\
\Rightarrow \dfrac{t}{15}=3 \\
\therefore t=15 \times 3=45 \text { hours }$
That is, if half-life of a sample is $15 \mathrm{hrs}$, then time taken for $\dfrac{7}{8}$ of the sample to decay is $45 \mathrm{hrs}$.
Therefore, the answer is option D.
Notes: One of the possible mistakes most people make is they consider the amount of sample as $\dfrac{7}{8}$. But actually, $\mathrm{N}$ in the equation stands for the remaining amount of sample. We approximate the original amount of sample to 1 since here fraction is considered. If the amount was given in percentage, we take the original amount as 100.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

CBSE Class 12 Physics Set 2 (55/2/2) 2025 Question Paper & Solutions

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Units and Measurements Mock Test for JEE Main 2025-26 Preparation

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

