
The half-life of the isotope ${ }_{11} \mathrm{Na}^{24}$ is $15 \mathrm{hrs}$. How much time does it take for $\dfrac{7}{8}$ th of a sample of this isotope to decay
A. $75\, \mathrm{hrs}$
B. $65\, \mathrm{hrs}$
C. $55\, \mathrm{hrs}$
D. $45\, \mathrm{hrs}$
Answer
220.5k+ views
Hint:The Half life of the radioactive sample is the time taken by the sample to reach half of the original sample. In this problem half-life of the element is given and we have to find the time taken for $\dfrac{7}{8}$ th of a sample to decay. Therefore, we can use the direct equation connecting all these factors to find the solution.
Formula used:
We can use the following formula to calculate the time taken for $\dfrac{7}{8} t h$ of a sample to decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $\mathrm{t}$ time.
$N_{0}$ is the original amount of sample.
$\mathrm{T}$ is the half-life of the isotope.
Complete step by step solution:
Here in this question half-life of the isotope ${ }_{11} N a^{24}$ is given as $15 \mathrm{hrs}$. After time the $\dfrac{7}{8}$ th of the sample is decayed. We have to find the time taken for this decay. To use the given we have to find how much sample is remaining now.
If we consider the amount of original sample present as 1,then
Undecayed sample, $N=1-\dfrac{7}{8}=\dfrac{1}{8}$
And $\mathrm{T}=15 \mathrm{hrs}$
Therefore,
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}} \Rightarrow \dfrac{1}{8}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{15}}$
Taking natural logarithm, we get:
$\ln \dfrac{1}{8}=\dfrac{t}{15} \ln \dfrac{1}{2}$
On further solving we get:
$\dfrac{t}{15}=\dfrac{\ln \dfrac{1}{8}}{\ln \dfrac{1}{2}} \\
\Rightarrow \dfrac{t}{15}=3 \\
\therefore t=15 \times 3=45 \text { hours }$
That is, if half-life of a sample is $15 \mathrm{hrs}$, then time taken for $\dfrac{7}{8}$ of the sample to decay is $45 \mathrm{hrs}$.
Therefore, the answer is option D.
Notes: One of the possible mistakes most people make is they consider the amount of sample as $\dfrac{7}{8}$. But actually, $\mathrm{N}$ in the equation stands for the remaining amount of sample. We approximate the original amount of sample to 1 since here fraction is considered. If the amount was given in percentage, we take the original amount as 100.
Formula used:
We can use the following formula to calculate the time taken for $\dfrac{7}{8} t h$ of a sample to decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $\mathrm{t}$ time.
$N_{0}$ is the original amount of sample.
$\mathrm{T}$ is the half-life of the isotope.
Complete step by step solution:
Here in this question half-life of the isotope ${ }_{11} N a^{24}$ is given as $15 \mathrm{hrs}$. After time the $\dfrac{7}{8}$ th of the sample is decayed. We have to find the time taken for this decay. To use the given we have to find how much sample is remaining now.
If we consider the amount of original sample present as 1,then
Undecayed sample, $N=1-\dfrac{7}{8}=\dfrac{1}{8}$
And $\mathrm{T}=15 \mathrm{hrs}$
Therefore,
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}} \Rightarrow \dfrac{1}{8}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{15}}$
Taking natural logarithm, we get:
$\ln \dfrac{1}{8}=\dfrac{t}{15} \ln \dfrac{1}{2}$
On further solving we get:
$\dfrac{t}{15}=\dfrac{\ln \dfrac{1}{8}}{\ln \dfrac{1}{2}} \\
\Rightarrow \dfrac{t}{15}=3 \\
\therefore t=15 \times 3=45 \text { hours }$
That is, if half-life of a sample is $15 \mathrm{hrs}$, then time taken for $\dfrac{7}{8}$ of the sample to decay is $45 \mathrm{hrs}$.
Therefore, the answer is option D.
Notes: One of the possible mistakes most people make is they consider the amount of sample as $\dfrac{7}{8}$. But actually, $\mathrm{N}$ in the equation stands for the remaining amount of sample. We approximate the original amount of sample to 1 since here fraction is considered. If the amount was given in percentage, we take the original amount as 100.
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Young’s Double Slit Experiment Derivation Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

