
The half-life of a radioactive material is 100 s. Then after 5 min, in 8 gm material remaining active material is?
(A) 1 gm
(B) 4 gm
(C) 2 gm
(D) 1.5 gm
Answer
232.8k+ views
Hint: To answer this question we should be implementing the formula of half-life. Once we find an answer we can use the formula which develops the relationship between the remaining amount and the original amount of the radioactive material. This formula will give us the required amount as an answer.
Complete step by step answer:
The time that is given in the question is 5 minutes. This can be written as t = 5 minutes or $t = 5 \times 60\operatorname{s} = 300s$.
So now we can write that the number of half-lives is n or we can say
$n = \dfrac{t}{{{t_{1/2}}}}$
Put the values in the above equation to get:
$\dfrac{{300}}{{100}} = 3$
Now we have to find the relationship between the remaining amount which is N and the initial amount which is \[{N_0}\].
The formula to find the relationship between N and \[{N_0}\]is given by:
\[N = {N_0}{\left( {\dfrac{1}{2}} \right)^n}\]
Solving the above relation, we get that:
\[N = \dfrac{{{N_0}}}{8},{N_0} = 8gm\]
So we can say that after 5 minutes the remaining amount or N will be 1 gm.
So, the correct answer is Option A.
Note: In this question we have come across the term half-life. For the better understanding we need to know the meaning of the term half-life. By half-life we mean the time that is required for any specific quantity to reduce to half of the initial value of itself. The half-life actually signifies how the atoms that form the quantity are unstable and they undergo a radioactive decay. From the value of the half-life we can find out the stability of the atoms forming a specific quantity.
Complete step by step answer:
The time that is given in the question is 5 minutes. This can be written as t = 5 minutes or $t = 5 \times 60\operatorname{s} = 300s$.
So now we can write that the number of half-lives is n or we can say
$n = \dfrac{t}{{{t_{1/2}}}}$
Put the values in the above equation to get:
$\dfrac{{300}}{{100}} = 3$
Now we have to find the relationship between the remaining amount which is N and the initial amount which is \[{N_0}\].
The formula to find the relationship between N and \[{N_0}\]is given by:
\[N = {N_0}{\left( {\dfrac{1}{2}} \right)^n}\]
Solving the above relation, we get that:
\[N = \dfrac{{{N_0}}}{8},{N_0} = 8gm\]
So we can say that after 5 minutes the remaining amount or N will be 1 gm.
So, the correct answer is Option A.
Note: In this question we have come across the term half-life. For the better understanding we need to know the meaning of the term half-life. By half-life we mean the time that is required for any specific quantity to reduce to half of the initial value of itself. The half-life actually signifies how the atoms that form the quantity are unstable and they undergo a radioactive decay. From the value of the half-life we can find out the stability of the atoms forming a specific quantity.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

