
The given figure shows three blocks in contact and kept on a smooth horizontal surface. What is the ratio of force exerted by block A on B to that of B on C?

A.$3:1$
B. $1:3$
C. $2:3$
D. $3:2$
Answer
125.4k+ views
Hint: Look at this problem considering different systems, first consider all three blocks as a system, check the external forces and then apply Newton’s Second law, then follow the same for all three individual blocks or the two blocks from which you will obtain the required forces.
Complete step by step answer:
From the figure we can see
the mass of the block A, ${m_A} = 5\,kg$
mass of the block B, ${m_B} = 2\,kg$
mass of the block C, ${m_C} = 1\,kg$
Therefore, total mass of three blocks,
$M = {m_A} + {m_B} + {m_C}$
$ \Rightarrow M = 5\,kg + 2\,kg + 1\,kg$
$\therefore M = 8\,kg$
According to Newton 2nd law force is the rate of change of momentum. That is,
$F = \dfrac{{dP}}{{dt}}$
Where $P$ is a momentum given by
$P = mv$
Substituting this in equation 1 we get
$F = m\dfrac{{dv}}{{dt}}$
So, Newton's second law can also be expressed as
$F = ma$
Where, $m$ is the mass and $a$ is the acceleration.
From this acceleration is equal to
$a = \dfrac{F}{M}$
On substituting the given values, we get
Acceleration of the block
$a = \,\dfrac{{16}}{8}\, = 2\,m/{s^2}$
Let ${F_{AB}}$ be the force of contact exerted by block A on B and let ${F_{BC}}$ be the force exerted by block B on C
So, we can write the net force on A as the force given on A minus contact force exerted by block A on B.
${m_A}a = F - {F_{AB}}$
That is,
$5 \times 2 = 16 - {F_{AB}}$
$ \Rightarrow {F_{AB}} = 6\,N$
Now, we can write the force on B as force on B due to A minus the force on C due to B.
${m_B}a = {F_{AB}} - {F_{CB}}$
That is,
$2 \times 2 = 6 - {F_{BC}}$
$ \Rightarrow {F_{BC}} = 2\,N$
Therefore,
The ratio of force exerted by block A on B to that of B on C is
$\dfrac{{{F_{AB}}}}{{{F_{BC}}}} = \dfrac{6}{2}$
$\therefore \dfrac{{{F_{AB}}}}{{{F_{BC}}}} = \dfrac{3}{1}$
So, the ratio of the two forces is 3:1 .
Thus, the answer is option A.
Note: The acceleration of the three blocks will be the same but net force on each block will be different due to the difference in mass of the blocks.
The contact force exerted by A on B is same as that of B on A. That is
${F_{AB}} = {F_{BA}}$
Also,
${F_{BC}} = {F_{CA}}$
Complete step by step answer:
From the figure we can see
the mass of the block A, ${m_A} = 5\,kg$
mass of the block B, ${m_B} = 2\,kg$
mass of the block C, ${m_C} = 1\,kg$
Therefore, total mass of three blocks,
$M = {m_A} + {m_B} + {m_C}$
$ \Rightarrow M = 5\,kg + 2\,kg + 1\,kg$
$\therefore M = 8\,kg$
According to Newton 2nd law force is the rate of change of momentum. That is,
$F = \dfrac{{dP}}{{dt}}$
Where $P$ is a momentum given by
$P = mv$
Substituting this in equation 1 we get
$F = m\dfrac{{dv}}{{dt}}$
So, Newton's second law can also be expressed as
$F = ma$
Where, $m$ is the mass and $a$ is the acceleration.
From this acceleration is equal to
$a = \dfrac{F}{M}$
On substituting the given values, we get
Acceleration of the block
$a = \,\dfrac{{16}}{8}\, = 2\,m/{s^2}$
Let ${F_{AB}}$ be the force of contact exerted by block A on B and let ${F_{BC}}$ be the force exerted by block B on C
So, we can write the net force on A as the force given on A minus contact force exerted by block A on B.
${m_A}a = F - {F_{AB}}$
That is,
$5 \times 2 = 16 - {F_{AB}}$
$ \Rightarrow {F_{AB}} = 6\,N$
Now, we can write the force on B as force on B due to A minus the force on C due to B.
${m_B}a = {F_{AB}} - {F_{CB}}$
That is,
$2 \times 2 = 6 - {F_{BC}}$
$ \Rightarrow {F_{BC}} = 2\,N$
Therefore,
The ratio of force exerted by block A on B to that of B on C is
$\dfrac{{{F_{AB}}}}{{{F_{BC}}}} = \dfrac{6}{2}$
$\therefore \dfrac{{{F_{AB}}}}{{{F_{BC}}}} = \dfrac{3}{1}$
So, the ratio of the two forces is 3:1 .
Thus, the answer is option A.
Note: The acceleration of the three blocks will be the same but net force on each block will be different due to the difference in mass of the blocks.
The contact force exerted by A on B is same as that of B on A. That is
${F_{AB}} = {F_{BA}}$
Also,
${F_{BC}} = {F_{CA}}$
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
