
The frequency \[(f)\] of a string depends upon the tension \[F\] (dimensions of force), the length \[l\] of the string and the mass per unit length \[\mu \] of the string. Derive the formula for frequency.
Answer
232.8k+ views
Hint: Assume a proportional relation of \[f\] with \[F\], \[l\] and \[\mu \]. Then use the dimensional analysis to derive the formula.
Complete step-by-step solution
Let the frequency \[f\] be proportional to the tension \[F\] raised to the power \[x\], length \[l\] raised to the power \[y\] and mass per unit length \[\mu \] raised to the power \[z\], i.e.
\[f \propto {F^x}{l^y}{\mu ^z}\]
Removing the proportionality sign with the constant \[c\], we get
\[f = c({F^x}{l^y}{\mu ^z})\] …...(1)
For the above equation to be correct, the dimensions of the quantity in the LHS should be equal to the dimensions of the quantities in the RHS.
Replacing the quantities of the above equation with their dimensions, we get
\[\left[ f \right] = \left[ {{M^0}{L^0}{T^{ - 1}}} \right]\], \[\left[ F \right] = \left[ {{M^1}{L^1}{T^{ - 2}}} \right]\], \[\left[ l \right] = \left[ {{M^0}{L^1}{T^0}} \right]\]and \[\left[ \mu \right] = \left[ {{M^1}{L^{ - 1}}{T^0}} \right]\]
\[\because c\] is a constant, so it has no dimensions.
Substituting these in (1) we get
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = {\left[ {{M^1}{L^1}{T^{ - 2}}} \right]^x}{\left[ {{M^0}{L^1}{T^0}} \right]^y}{\left[ {{M^1}{L^{ - 1}}{T^0}} \right]^z}\]
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^x}{L^x}{T^{ - 2x}}} \right]\left[ {{M^0}{L^y}{T^0}} \right]\left[ {{M^z}{L^{ - z}}{T^0}} \right]\]
On simplifying, we get
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^{x + z}}{L^{x + y - z}}{T^{ - 2x}}} \right]\]
Comparing the exponents of similar dimensions, we get
\[x + z = 0\] ………..(2)
\[x + y - z = 0\] ………...(3)
And
\[ - 2x = - 1\] …………..(4)
From (4), we get \[x = \dfrac{1}{2}\]
Putting this in (2)
\[\dfrac{1}{2} + z = 0\]
\[z = - \dfrac{1}{2}\]
Putting the values of \[x,z\] in (3)
\[\dfrac{1}{2} + y - \left( { - \dfrac{1}{2}} \right) = 0\]
\[y + 1 = 0\]
Finally, \[y = - 1\]
\[\therefore x = \dfrac{1}{2}, y = - 1,z = - \dfrac{1}{2}\]
Putting these values in (1)
\[f = c({F^{\dfrac{1}{2}}}{l^{ - 1}}{\mu ^{ - \dfrac{1}{2}}})\]
Or, \[f = \dfrac{c}{l}\sqrt {\dfrac{F}{\mu }} \]
Hence, the formula for the frequency is
\[f = \dfrac{c}{l}\sqrt {\dfrac{F}{\mu }} \], where \[c\] is a constant.
Additional Information: The value of the c can be found experimentally. By experiment, it is found that \[c = \dfrac{1}{2}\]. Putting this value in the expression of frequency derived above, the final formula for frequency becomes:
\[f = \dfrac{1}{{2l}}\sqrt {\dfrac{F}{\mu }} \]
The formula derived above is used in finding the set of frequencies, called the normal modes of oscillation. The formula derived above is used to find the effect of increasing or decreasing the tension of a musical instrument on the frequency.
Note: While deriving a formula using dimensional analysis, be careful while writing the dimensions of each quantity. We can use any physical formula of each quantity to find its dimensions. Always prefer to use the formula which relates the quantity with more fundamental quantities.
Complete step-by-step solution
Let the frequency \[f\] be proportional to the tension \[F\] raised to the power \[x\], length \[l\] raised to the power \[y\] and mass per unit length \[\mu \] raised to the power \[z\], i.e.
\[f \propto {F^x}{l^y}{\mu ^z}\]
Removing the proportionality sign with the constant \[c\], we get
\[f = c({F^x}{l^y}{\mu ^z})\] …...(1)
For the above equation to be correct, the dimensions of the quantity in the LHS should be equal to the dimensions of the quantities in the RHS.
Replacing the quantities of the above equation with their dimensions, we get
\[\left[ f \right] = \left[ {{M^0}{L^0}{T^{ - 1}}} \right]\], \[\left[ F \right] = \left[ {{M^1}{L^1}{T^{ - 2}}} \right]\], \[\left[ l \right] = \left[ {{M^0}{L^1}{T^0}} \right]\]and \[\left[ \mu \right] = \left[ {{M^1}{L^{ - 1}}{T^0}} \right]\]
\[\because c\] is a constant, so it has no dimensions.
Substituting these in (1) we get
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = {\left[ {{M^1}{L^1}{T^{ - 2}}} \right]^x}{\left[ {{M^0}{L^1}{T^0}} \right]^y}{\left[ {{M^1}{L^{ - 1}}{T^0}} \right]^z}\]
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^x}{L^x}{T^{ - 2x}}} \right]\left[ {{M^0}{L^y}{T^0}} \right]\left[ {{M^z}{L^{ - z}}{T^0}} \right]\]
On simplifying, we get
\[\left[ {{M^0}{L^0}{T^{ - 1}}} \right] = \left[ {{M^{x + z}}{L^{x + y - z}}{T^{ - 2x}}} \right]\]
Comparing the exponents of similar dimensions, we get
\[x + z = 0\] ………..(2)
\[x + y - z = 0\] ………...(3)
And
\[ - 2x = - 1\] …………..(4)
From (4), we get \[x = \dfrac{1}{2}\]
Putting this in (2)
\[\dfrac{1}{2} + z = 0\]
\[z = - \dfrac{1}{2}\]
Putting the values of \[x,z\] in (3)
\[\dfrac{1}{2} + y - \left( { - \dfrac{1}{2}} \right) = 0\]
\[y + 1 = 0\]
Finally, \[y = - 1\]
\[\therefore x = \dfrac{1}{2}, y = - 1,z = - \dfrac{1}{2}\]
Putting these values in (1)
\[f = c({F^{\dfrac{1}{2}}}{l^{ - 1}}{\mu ^{ - \dfrac{1}{2}}})\]
Or, \[f = \dfrac{c}{l}\sqrt {\dfrac{F}{\mu }} \]
Hence, the formula for the frequency is
\[f = \dfrac{c}{l}\sqrt {\dfrac{F}{\mu }} \], where \[c\] is a constant.
Additional Information: The value of the c can be found experimentally. By experiment, it is found that \[c = \dfrac{1}{2}\]. Putting this value in the expression of frequency derived above, the final formula for frequency becomes:
\[f = \dfrac{1}{{2l}}\sqrt {\dfrac{F}{\mu }} \]
The formula derived above is used in finding the set of frequencies, called the normal modes of oscillation. The formula derived above is used to find the effect of increasing or decreasing the tension of a musical instrument on the frequency.
Note: While deriving a formula using dimensional analysis, be careful while writing the dimensions of each quantity. We can use any physical formula of each quantity to find its dimensions. Always prefer to use the formula which relates the quantity with more fundamental quantities.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

