The free change for a reversible reaction at equilibrium is:
A. Zero
B. Positive
C. Negative
D. None of these
Answer
Verified
117.3k+ views
Hint: The Gibbs free energy for a reversible reaction depends on the factors like enthalpy, entropy and temperature and it makes the reaction spontaneous, when it is negative.
Complete step by step solution:
Gibbs free energy is defined as “that thermodynamic quantity of a system the decrease in whose value during a process is equal to the maximum possible useful work that can be obtained from the system”.
Basically, Gibbs free energy is a measure of the amount of energy available to do work in an isothermal (at constant temperature) and isobaric (at constant pressure) thermodynamic system.
The term ‘free’ in Gibbs free energy refers to the amount of energy present in a system in usable form.
For a change taking place at constant temperature and pressure:
$\Delta G = \Delta H - T\Delta S$ ,where $\Delta G$ is change in Gibbs free energy, $\Delta H$ is change in enthalpy of reaction, $\Delta S$ is change in entropy and $T$ is the constant temperature at which reaction takes place.
We should know the criteria in terms of Gibbs free energy for spontaneity of the process which are as follows:
If $\Delta G$ is negative, then the process will be spontaneous.
If $\Delta G$ is positive, then the direct process is non-spontaneous.
If $\Delta G$ is zero, then we can say that the given process is in equilibrium.
Therefore, from above points, we can now say that option A is the correct answer.
Note: It should be remembered that the Gibbs free energy of a system is state function i.e. Does not depend on path and depends only on the initial and final state of thermodynamic properties.
Complete step by step solution:
Gibbs free energy is defined as “that thermodynamic quantity of a system the decrease in whose value during a process is equal to the maximum possible useful work that can be obtained from the system”.
Basically, Gibbs free energy is a measure of the amount of energy available to do work in an isothermal (at constant temperature) and isobaric (at constant pressure) thermodynamic system.
The term ‘free’ in Gibbs free energy refers to the amount of energy present in a system in usable form.
For a change taking place at constant temperature and pressure:
$\Delta G = \Delta H - T\Delta S$ ,where $\Delta G$ is change in Gibbs free energy, $\Delta H$ is change in enthalpy of reaction, $\Delta S$ is change in entropy and $T$ is the constant temperature at which reaction takes place.
We should know the criteria in terms of Gibbs free energy for spontaneity of the process which are as follows:
If $\Delta G$ is negative, then the process will be spontaneous.
If $\Delta G$ is positive, then the direct process is non-spontaneous.
If $\Delta G$ is zero, then we can say that the given process is in equilibrium.
Therefore, from above points, we can now say that option A is the correct answer.
Note: It should be remembered that the Gibbs free energy of a system is state function i.e. Does not depend on path and depends only on the initial and final state of thermodynamic properties.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main
Aqueous solution of HNO3 KOH CH3COOH CH3COONa of identical class 11 chemistry JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
Other Pages
NCERT Solutions for Class 11 Chemistry In Hindi Chapter 7 Equilibrium
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy
Essay on Christmas: Celebrating the Spirit of the Season
JEE Main Physics Question Paper PDF Download with Answer Key
JEE Main 2025 Question Paper PDFs with Solutions Free Download