
The formula of the kinetic mass of a photon is? Where h is Planck’s constant,$\upsilon $ is the frequency of the photon and c is the speed.
(A) $\dfrac{{h\upsilon }}{c}$
(B) $\dfrac{{h\upsilon }}{{{c^2}}}$
(C) $\dfrac{{hc}}{\upsilon }$
(D) $\dfrac{{{c^2}}}{{h\upsilon }}$
Answer
131.7k+ views
Hint The mass and energy are interchangeable according to Einstein’s special theory of relativity. The equation is given as $E = m{c^2}$ where, $m$ is the mass and $c$ is the speed of light. And the equation connecting Planck’s constant and the energy is the Planck’s equation of energy which is given as $E = h\upsilon $ , Where $h$ is the Planck’s constant and $\upsilon $ is the frequency of the photon.
Complete Step by step solution
Take Einstein’s equation of special relativity,
$E = m{c^2}$ Where, $m$ is the mass and $c$ is the speed of light.
Also consider the Planck’s equation of energy which is given as $E = h\upsilon $ , Where $h$ is the Planck’s constant and $\upsilon $ is the frequency of the photon.
Combining these two equations, we get
$
m{c^2} = h\upsilon \\
m = \dfrac{{h\upsilon }}{{{c^2}}} \\
$
We know that the proton has no rest mass. But the effective mass in the above expression says that the effective mass varies according to the frequency of the photon. Also the above expression can be explained in the particle nature that each photon is having mass $m = \dfrac{{h\upsilon }}{{{c^2}}}$are travelling at the speed of light. The photon having higher frequency and lower wavelength will have higher effective mass which implies that it would have higher energy. This is according to the mass energy conversion described in Einstein's special theory of Relativity.
The correct answer is Option B.
Note Since the protons have no mass, the term “Kinetic mass” relates to the kinetic energy of the photon. The energy of the photon is given as $E = \dfrac{{hc}}{\lambda }$ where $\lambda $ is the wavelength of the photon.
Comparing with the Einstein’s special theory of relativity,
$
m{c^2} = \dfrac{{hc}}{\lambda } \\
m = \dfrac{h}{{c\lambda }} \\
$
This is also the kinetic mass of the photon.
Complete Step by step solution
Take Einstein’s equation of special relativity,
$E = m{c^2}$ Where, $m$ is the mass and $c$ is the speed of light.
Also consider the Planck’s equation of energy which is given as $E = h\upsilon $ , Where $h$ is the Planck’s constant and $\upsilon $ is the frequency of the photon.
Combining these two equations, we get
$
m{c^2} = h\upsilon \\
m = \dfrac{{h\upsilon }}{{{c^2}}} \\
$
We know that the proton has no rest mass. But the effective mass in the above expression says that the effective mass varies according to the frequency of the photon. Also the above expression can be explained in the particle nature that each photon is having mass $m = \dfrac{{h\upsilon }}{{{c^2}}}$are travelling at the speed of light. The photon having higher frequency and lower wavelength will have higher effective mass which implies that it would have higher energy. This is according to the mass energy conversion described in Einstein's special theory of Relativity.
The correct answer is Option B.
Note Since the protons have no mass, the term “Kinetic mass” relates to the kinetic energy of the photon. The energy of the photon is given as $E = \dfrac{{hc}}{\lambda }$ where $\lambda $ is the wavelength of the photon.
Comparing with the Einstein’s special theory of relativity,
$
m{c^2} = \dfrac{{hc}}{\lambda } \\
m = \dfrac{h}{{c\lambda }} \\
$
This is also the kinetic mass of the photon.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
