
The force between two current-carrying parallel wires has been used to define
A) Ampere
B) Coulomb
C) Volt
D) Watt
Answer
215.7k+ views
Hint: The force per unit length between two current-carrying wires depends on the product of the current flowing in the individual wires and inversely proportional to the distance between them. Ampere is the unit of current.
Formula used: In this solution, we will use the following formula:
Force per length between two current-carrying wires: $\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$ where ${I_1}\,{\text{and}}\,{I_2}$ are the current in the two wires, $r$ is the distance between them.
Complete step by step answer:
We know that the force per length between two current-carrying wires is given by:
$\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$
In this equation, for two given wires, we can calculate the force that acts between them and we can also measure the distance between the two wires experimentally. Then we can say that 1 Newton of force acts per unit length for two current-carrying wires that carry a current of 1 Ampere and are placed 1 metre apart.
Hence the force between two current-carrying parallel wires is used to define the units of Ampere.
So, option (A) is the correct choice.
Note: The force between two current-carrying wires depends on the direction of the currents in the two wires. If the currents flow in opposite directions, the force is attractive and if the current is in the same direction, the force is repulsive. One ampere of current corresponds to the value carried by two wires which when placed one metre apart will experience a force of 1 Newton between each other.
Formula used: In this solution, we will use the following formula:
Force per length between two current-carrying wires: $\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$ where ${I_1}\,{\text{and}}\,{I_2}$ are the current in the two wires, $r$ is the distance between them.
Complete step by step answer:
We know that the force per length between two current-carrying wires is given by:
$\dfrac{F}{l} = \dfrac{{2{\mu _0}{I_1}{I_2}}}{r}$
In this equation, for two given wires, we can calculate the force that acts between them and we can also measure the distance between the two wires experimentally. Then we can say that 1 Newton of force acts per unit length for two current-carrying wires that carry a current of 1 Ampere and are placed 1 metre apart.
Hence the force between two current-carrying parallel wires is used to define the units of Ampere.
So, option (A) is the correct choice.
Note: The force between two current-carrying wires depends on the direction of the currents in the two wires. If the currents flow in opposite directions, the force is attractive and if the current is in the same direction, the force is repulsive. One ampere of current corresponds to the value carried by two wires which when placed one metre apart will experience a force of 1 Newton between each other.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

