
The following question consists of two statements, one labelled as “Assertion (A)”
and the other labelled as “Reason (R)”. You are to examine these two statements carefully and decide if the Assertion (A) and the Reason (R) are individually true and if so, whether the
Reason (R) is the correct explanation for the given Assertion (A). Select your answer to these
items using the codes given below and then select the correct option.
Codes:
(A) Both A and R are individually true and R is the correct explanation of A
(B) Both A and R are individually true and R is not the correct explanation of A
(C) A is true but R is false
(D) A is false but R is true
Assertion (A): Let \[f:[0,\infty )\to [0,\infty ],\]be a function defined by \[y=f\left( x \right)={{x}^{2}}\], then \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)=1\]
Reason (R): \[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=1\]
(a) A
(b) B
(c) C
(d) D
Answer
216.3k+ views
Hint: Differentiate the given function with respect to \[x\] and with respect to \[y\] twice.
A: Given \[f:[0,\infty )\to [0,\infty ]\]be a function defined by \[y=f\left( x \right)={{x}^{2}}\], then we have to check the value of \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)\].
Now, we take the given function,
\[y={{x}^{2}}....\left( i \right)\]
Now, we differentiate it with respect to \[x\].
\[\left[ \text{Also}\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} \right]\]
Therefore, \[\dfrac{dy}{dx}=2x.....\left( ii \right)\]
Again differentiating with respect to \[x\],
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2....\left( iii \right)\]
As we have found that, \[\dfrac{dy}{dx}=2x\]
By taking reciprocal on both sides,
We get, \[\dfrac{dx}{dy}=\dfrac{1}{2x}....\left( iv \right)\]
Now, we differentiate with respect to \[y\].
We get, \[\dfrac{d}{dy}\left( \dfrac{dx}{dy} \right)=\dfrac{d}{dy}\left( \dfrac{1}{2x} \right)\]
\[\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-1}{2{{x}^{2}}}\dfrac{dx}{dy}\]
Now, we put the value of \[\dfrac{dx}{dy}\].
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-1}{2{{x}^{2}}}.\dfrac{1}{2x}\]
Hence, \[\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-1}{4{{x}^{3}}}....\left( v \right)\]
Multiplying equation \[\left( iii \right)\]and \[\left( v \right)\],
We get, \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right).\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)=2.\left( \dfrac{-1}{4{{x}^{3}}} \right)\]
Therefore, \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right).\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}}
\right)=\dfrac{-1}{2{{x}^{3}}}\].
Hence, given Assertion (A) is wrong.
R: Here we have to check whether \[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=1\]or not.
We know that any quantity when multiplied by its reciprocal gives a result as \[1\].
That is \[a\times \dfrac{1}{a}=1\].
Now, we put \[a=\dfrac{dy}{dx}\].
We get, \[\dfrac{dy}{dx}\times \dfrac{1}{\dfrac{dy}{dx}}=1\]
Or, \[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=1\]
To verify it further, we multiply the equation \[\left( ii \right)\]and \[\left( iv \right)\].
\[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=2x.\dfrac{1}{2x}\]
Therefore, \[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=1\] [Hence Proved]
Hence, Reason (R) is correct.
Therefore, option (d) is correct that is A is false and R is true
Note: Some students misunderstand that \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}\]and \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] are reciprocal of each other like \[\dfrac{dx}{dy}\]and \[\dfrac{dy}{dx}\], but they are not as proved by above result also.
A: Given \[f:[0,\infty )\to [0,\infty ]\]be a function defined by \[y=f\left( x \right)={{x}^{2}}\], then we have to check the value of \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)\].
Now, we take the given function,
\[y={{x}^{2}}....\left( i \right)\]
Now, we differentiate it with respect to \[x\].
\[\left[ \text{Also}\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} \right]\]
Therefore, \[\dfrac{dy}{dx}=2x.....\left( ii \right)\]
Again differentiating with respect to \[x\],
We get, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2....\left( iii \right)\]
As we have found that, \[\dfrac{dy}{dx}=2x\]
By taking reciprocal on both sides,
We get, \[\dfrac{dx}{dy}=\dfrac{1}{2x}....\left( iv \right)\]
Now, we differentiate with respect to \[y\].
We get, \[\dfrac{d}{dy}\left( \dfrac{dx}{dy} \right)=\dfrac{d}{dy}\left( \dfrac{1}{2x} \right)\]
\[\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-1}{2{{x}^{2}}}\dfrac{dx}{dy}\]
Now, we put the value of \[\dfrac{dx}{dy}\].
We get, \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-1}{2{{x}^{2}}}.\dfrac{1}{2x}\]
Hence, \[\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-1}{4{{x}^{3}}}....\left( v \right)\]
Multiplying equation \[\left( iii \right)\]and \[\left( v \right)\],
We get, \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right).\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)=2.\left( \dfrac{-1}{4{{x}^{3}}} \right)\]
Therefore, \[\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right).\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}}
\right)=\dfrac{-1}{2{{x}^{3}}}\].
Hence, given Assertion (A) is wrong.
R: Here we have to check whether \[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=1\]or not.
We know that any quantity when multiplied by its reciprocal gives a result as \[1\].
That is \[a\times \dfrac{1}{a}=1\].
Now, we put \[a=\dfrac{dy}{dx}\].
We get, \[\dfrac{dy}{dx}\times \dfrac{1}{\dfrac{dy}{dx}}=1\]
Or, \[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=1\]
To verify it further, we multiply the equation \[\left( ii \right)\]and \[\left( iv \right)\].
\[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=2x.\dfrac{1}{2x}\]
Therefore, \[\left( \dfrac{dy}{dx} \right).\left( \dfrac{dx}{dy} \right)=1\] [Hence Proved]
Hence, Reason (R) is correct.
Therefore, option (d) is correct that is A is false and R is true
Note: Some students misunderstand that \[\dfrac{{{d}^{2}}x}{d{{y}^{2}}}\]and \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] are reciprocal of each other like \[\dfrac{dx}{dy}\]and \[\dfrac{dy}{dx}\], but they are not as proved by above result also.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

