
The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied?
(A) Length = 50 cm, Diameter = 0.5 mm
(B) Length = 100 cm, Diameter = 1 mm
(C) Length = 200 cm, Diameter = 2 mm
(D) Length = 300 cm, Diameter = 3 mm
Answer
218.4k+ views
Hint We will first use the young’s law to calculate the elongation of wire using \[\gamma = \dfrac{{stress}}{{strain}}\] , we will put the equations of stress and strain and simplify to find the elongation equation.
After that we will see that the elongation is directly proportional to \[\dfrac{L}{{{D^2}}}\] , \[{\text{L}}\]is the actual length and D is the diameter.
Then we will calculate the \[\dfrac{L}{{{D^2}}}\] value for each wire and the wire which will have maximum value of \[\dfrac{L}{{{D^2}}}\] has the largest extension.
Complete step by step solution
As given that same tension is applied on the wires, for extension we use young’s law equation i.e. \[\gamma = \dfrac{{stress}}{{strain}}\] , where \[\gamma \] is the young’s modulus.
Now as we know that \[stress = \dfrac{F}{A}\] , where F is the force and A is the area. Then we know \[A = \pi {r^2}\] , where r is the radius , also \[r = \dfrac{D}{2}\] , where D is the diameter .
So \[A = \dfrac{{\pi {D^2}}}{4}\] . Now we know the formula of strain i.e. \[strain = \dfrac{{\Delta L}}{L}\] , where \[\Delta L\] is the elongation and L is the actual length.
Now substituting the equations of stress and strain in young’s modulus and solving the equation for \[\Delta L\] we get:
\[\gamma = \dfrac{{4F}}{{\pi {D^2}}}\dfrac{L}{{\Delta L}}\]
Now we find \[\Delta L\] i.e. \[\Delta L = \dfrac{{4F}}{{\pi {D^2}}}\dfrac{L}{\gamma }\] .
As we can see that \[\Delta L\alpha \dfrac{L}{{{D^2}}}\] i.e. elongation is directly proportional to \[\dfrac{L}{{{D^2}}}\] .
So, the wire which has the largest extension has the largest \[\dfrac{L}{{{D^2}}}\] value.
Now we check each and every option one by one and find which has the largest \[\dfrac{L}{{{D^2}}}\] value
For wire A , \[\dfrac{L}{{{D^2}}} = \dfrac{{50}}{{{{0.5}^2}}} = 20000\]
For wire B, \[\dfrac{L}{{{D^2}}} = \dfrac{{100}}{{{{0.1}^2}}} = 10000\]
For wire C, \[\dfrac{L}{{{D^2}}} = \dfrac{{200}}{{{{0.2}^2}}} = 5000\]
For wire D, \[\dfrac{L}{{{D^2}}} = \dfrac{{300}}{{{{0.3}^2}}} = 3333.33\].
Thus, wire A has the largest extension.
So, the correct option is A.
Note Always remember the stress is Force/Area. One tends to consider that tension is a stress. But note that tension is a force, it has to be divided by the cross-section area to give the tensile stress.
Note that young’s modulus is a specific form of Hooke’s law of elasticity, that states that force needed to extend a spring by some distance (x) scales linearly with respect to that distance.
Also remember that young’s modulus is valid only in the range in which stress is proportional to the strain, and the material returns to its original dimensions when the external force is removed.
After that we will see that the elongation is directly proportional to \[\dfrac{L}{{{D^2}}}\] , \[{\text{L}}\]is the actual length and D is the diameter.
Then we will calculate the \[\dfrac{L}{{{D^2}}}\] value for each wire and the wire which will have maximum value of \[\dfrac{L}{{{D^2}}}\] has the largest extension.
Complete step by step solution
As given that same tension is applied on the wires, for extension we use young’s law equation i.e. \[\gamma = \dfrac{{stress}}{{strain}}\] , where \[\gamma \] is the young’s modulus.
Now as we know that \[stress = \dfrac{F}{A}\] , where F is the force and A is the area. Then we know \[A = \pi {r^2}\] , where r is the radius , also \[r = \dfrac{D}{2}\] , where D is the diameter .
So \[A = \dfrac{{\pi {D^2}}}{4}\] . Now we know the formula of strain i.e. \[strain = \dfrac{{\Delta L}}{L}\] , where \[\Delta L\] is the elongation and L is the actual length.
Now substituting the equations of stress and strain in young’s modulus and solving the equation for \[\Delta L\] we get:
\[\gamma = \dfrac{{4F}}{{\pi {D^2}}}\dfrac{L}{{\Delta L}}\]
Now we find \[\Delta L\] i.e. \[\Delta L = \dfrac{{4F}}{{\pi {D^2}}}\dfrac{L}{\gamma }\] .
As we can see that \[\Delta L\alpha \dfrac{L}{{{D^2}}}\] i.e. elongation is directly proportional to \[\dfrac{L}{{{D^2}}}\] .
So, the wire which has the largest extension has the largest \[\dfrac{L}{{{D^2}}}\] value.
Now we check each and every option one by one and find which has the largest \[\dfrac{L}{{{D^2}}}\] value
For wire A , \[\dfrac{L}{{{D^2}}} = \dfrac{{50}}{{{{0.5}^2}}} = 20000\]
For wire B, \[\dfrac{L}{{{D^2}}} = \dfrac{{100}}{{{{0.1}^2}}} = 10000\]
For wire C, \[\dfrac{L}{{{D^2}}} = \dfrac{{200}}{{{{0.2}^2}}} = 5000\]
For wire D, \[\dfrac{L}{{{D^2}}} = \dfrac{{300}}{{{{0.3}^2}}} = 3333.33\].
Thus, wire A has the largest extension.
So, the correct option is A.
Note Always remember the stress is Force/Area. One tends to consider that tension is a stress. But note that tension is a force, it has to be divided by the cross-section area to give the tensile stress.
Note that young’s modulus is a specific form of Hooke’s law of elasticity, that states that force needed to extend a spring by some distance (x) scales linearly with respect to that distance.
Also remember that young’s modulus is valid only in the range in which stress is proportional to the strain, and the material returns to its original dimensions when the external force is removed.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

