Answer

Verified

47.4k+ views

**Hint:**In the given configuration, the input is $A$ and $B$. So, the output will be $\left( {A + B} \right)$ for OR gate and $\left( {A.B} \right) = \overline A + \overline B $ for NAND gate. The resultant gate gives the high output signal when the number of high inputs is odd. Its output expression is $Y = A\overline B + B\overline A $.

**Complete step by step answer:**

In an OR gate, there are two or more input signals and like any other gate there is one output signal. This gate is called OR gate because if the first or the second or the third or …, i.e. if any of the input signals is high, the output signal will also be high.

In the given configuration, the input is $A$ and $B$. So, the output will be $\left( {A + B} \right)$

Joining the input of a NOT gate with the output of an AND gate, a NOT-AND, i.e., a NAND gate is constructed. So, the signal that comes at the output of an AND gate, goes to the input of a NOT gate. NOT gate inverts this signal and sends it to the output.

In the given configuration, the input is $A$ and $B$. So, the output will be $\left( {A.B} \right) = \overline A + \overline B $

In an AND gate, there are two or more input signals and any other gate there is one output signal. This gate is called AND gate because, if all the input signals, i.e., the first and the second and the third and … input signals are high, only then will the output voltage be high.

Here, the input is $\left( {A + B} \right)$ and $\left( {\overline A + \overline B } \right)$. So, the output will be $\left( {A + B} \right).\left( {\overline A + \overline B } \right)$

So, the given output is $Y = (A + B).(\overline A + \overline B )$ [DeMorgan’s theorem]

The above expression can also be rewritten as,

$Y = A\overline A + A\overline B + B\overline A + B\overline B $

$\implies Y = 0 + A\overline B + B\overline A + 0$

$\implies Y = A\overline B + B\overline A $

This is the expression of an XOR gate.

XOR gate is the digital logic gate that gives the high output signal when the number of high inputs is odd. XOR gate is also called the exclusive OR gate, because, if one, and only one of the inputs to the gate is high, the output result will also be high.

**Note:**DeMorgan’s theorem explains the identity between gates with inverted inputs and the gates with inverted outputs. In simple words, it states that the complement of the product of all the terms is equal to the sum of the complement of each term and vice versa. For example, a NAND gate is similar to a Negative-OR gate.

Recently Updated Pages

To get a maximum current in an external resistance class 1 physics JEE_Main

f a body travels with constant acceleration which of class 1 physics JEE_Main

A hollow sphere of mass M and radius R is rotating class 1 physics JEE_Main

If the beams of electrons and protons move parallel class 1 physics JEE_Main

Two radioactive nuclei P and Q in a given sample decay class 1 physics JEE_Main

silver wire has diameter 04mm and resistivity 16 times class 12 physics JEE_Main

Other Pages

An electric dipole is placed in an electric field generated class 12 physics JEE_Main

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main

The nitride ion in lithium nitride is composed of A class 11 chemistry JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

when an object Is placed at a distance of 60 cm from class 12 physics JEE_Main