
The focal length of a concave mirror is $12cm$. Where should an object of length $4cm$ be placed so that a real image of length $1cm$ is formed?
A) $48cm$
B) $3cm$
C) $60cm$
D) $15cm$
Answer
206.4k+ views
Hint:A mirror concave or convex has a definite radius of curvature, focal length and the images produced by them vary differently in different scenarios. We can easily determine the position, height of the object if these respective values are known for the image formed by the mirror by using the mirror formula.
Formula used:
Mirror formula
$\dfrac{1}{u} + \dfrac{1}{v} = \dfrac{1}{f}$
Where $u$ is the distance of object from the pole of the mirror
$v$ is the image distance from the pole
$f$ is the focal length of the mirror
Complete step by step answer:
In a spherical mirror when using the mirror formula we use certain sign conventions. Let’s discuss them first.
Anything measured towards right and up of the pole of the spherical mirror is taken as positive and anything measured towards the left or down of the pole of the mirror is considered negative. Just like the two-dimensional quadrant system.
So the object distance for an erect object in case of a concave mirror is always negative whereas its height is positive.
Let’s now understand what a real-image is. When the image formed by a mirror can be captured by screen is called real image. For an image being capable of capturing on a screen it must get projected by the mirror towards the object side.
Thus for this case we can say that the image distance is negative as per sign convention.
Now what about the focal length of the concave mirror? Well as we know, the concave mirror diversifies the light rays falling on its reflecting surface. This means that the focal length of the concave mirror is also assigned a negative sign.
Our above analysis gives us the mirror formula for the concave mirror.
Mathematically,
\[(\dfrac{1}{{ - u}}) + (\dfrac{1}{{ - v}}) = (\dfrac{1}{{ - f}})\]
Or simply speaking,
$ \Rightarrow \dfrac{1}{u} + \dfrac{1}{v} = \dfrac{1}{f}$
Magnification of the image is given by the following formula in spherical mirrors.
$m = - \dfrac{{h'}}{h}$ ……. (1)
Where $h'$ is the height of the image and $h$ is the height of the object.
In the above equation the negative sign implies that when a real image is formed by a concave mirror it is inverted.
Otherwise the magnification formula can also be expressed in terms of focal length and object distance as follows
$m = \dfrac{f}{{f - u}}$
This formula as per sign convention becomes
$m = \dfrac{{ - f}}{{u - f}}$ ……… (2)
Comparing equation (1) and (2) we get
$ \Rightarrow \dfrac{{ - h'}}{h} = \dfrac{{ - f}}{{ - f + u}}$
Substituting the respective values in the above equation we get,
$ \Rightarrow \dfrac{{ - 1}}{4} = \dfrac{{ - 12}}{{ - 12 + u}}$
$ \Rightarrow 12 - u = - 48$
Simplifying we get
$u = - 60cm$
Thus our correct answer is option (C).
Note:In any problem of optics always use proper sign convention. And also be careful to convert the units to a single system of units before attempting calculations to avoid errors as well as saving time. We have elaborated the mirror formula for the real image of a concave mirror in order to make easy understanding of sign conventions used in mirror equations.
Formula used:
Mirror formula
$\dfrac{1}{u} + \dfrac{1}{v} = \dfrac{1}{f}$
Where $u$ is the distance of object from the pole of the mirror
$v$ is the image distance from the pole
$f$ is the focal length of the mirror
Complete step by step answer:
In a spherical mirror when using the mirror formula we use certain sign conventions. Let’s discuss them first.
Anything measured towards right and up of the pole of the spherical mirror is taken as positive and anything measured towards the left or down of the pole of the mirror is considered negative. Just like the two-dimensional quadrant system.
So the object distance for an erect object in case of a concave mirror is always negative whereas its height is positive.
Let’s now understand what a real-image is. When the image formed by a mirror can be captured by screen is called real image. For an image being capable of capturing on a screen it must get projected by the mirror towards the object side.
Thus for this case we can say that the image distance is negative as per sign convention.
Now what about the focal length of the concave mirror? Well as we know, the concave mirror diversifies the light rays falling on its reflecting surface. This means that the focal length of the concave mirror is also assigned a negative sign.
Our above analysis gives us the mirror formula for the concave mirror.
Mathematically,
\[(\dfrac{1}{{ - u}}) + (\dfrac{1}{{ - v}}) = (\dfrac{1}{{ - f}})\]
Or simply speaking,
$ \Rightarrow \dfrac{1}{u} + \dfrac{1}{v} = \dfrac{1}{f}$
Magnification of the image is given by the following formula in spherical mirrors.
$m = - \dfrac{{h'}}{h}$ ……. (1)
Where $h'$ is the height of the image and $h$ is the height of the object.
In the above equation the negative sign implies that when a real image is formed by a concave mirror it is inverted.
Otherwise the magnification formula can also be expressed in terms of focal length and object distance as follows
$m = \dfrac{f}{{f - u}}$
This formula as per sign convention becomes
$m = \dfrac{{ - f}}{{u - f}}$ ……… (2)
Comparing equation (1) and (2) we get
$ \Rightarrow \dfrac{{ - h'}}{h} = \dfrac{{ - f}}{{ - f + u}}$
Substituting the respective values in the above equation we get,
$ \Rightarrow \dfrac{{ - 1}}{4} = \dfrac{{ - 12}}{{ - 12 + u}}$
$ \Rightarrow 12 - u = - 48$
Simplifying we get
$u = - 60cm$
Thus our correct answer is option (C).
Note:In any problem of optics always use proper sign convention. And also be careful to convert the units to a single system of units before attempting calculations to avoid errors as well as saving time. We have elaborated the mirror formula for the real image of a concave mirror in order to make easy understanding of sign conventions used in mirror equations.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

