The figure shows the vectors$\overrightarrow a $, $\overrightarrow b $ and$\overrightarrow c $. Where (R) is the midpoint of (PQ). Which of the following relations is correct?
(A) $\overrightarrow a + \overrightarrow b = 2\overrightarrow c $
(B) $\overrightarrow a + \overrightarrow b = \overrightarrow c $
(C) $\overrightarrow a - \overrightarrow b = 2\overrightarrow c $
(D) $\overrightarrow a - \overrightarrow b = \overrightarrow c $
Answer
Verified
118.8k+ views
Hint: We first find an equation for vector $\overrightarrow a $ then for vector $\overrightarrow b $ in terms of $\overrightarrow c $ and$\overrightarrow {PQ}$. Using these two equations and finding the sum of them we find the relation between vectors $\overrightarrow a $, $\overrightarrow b $ and$\overrightarrow c $. Since only the relation is asked the formula of the resultant is not necessary
Complete step by step answer:
From the diagram we know that vector $\overrightarrow a $ can be written as sum of vector $\overrightarrow c $ and vector $\overrightarrow {PR} $
$\overrightarrow a = \overrightarrow c + \overrightarrow {PR} $
Vector $\overrightarrow b $ can be written as the sum of vector $\overrightarrow c $ and vector $\overrightarrow {RQ} $
$\overrightarrow b = \overrightarrow c + \overrightarrow {RQ} $
Since the vectors $\overrightarrow {PR} $ and $\overrightarrow {RQ} $ are of equal magnitude and opposite in direction they can be equated as
$\overrightarrow {PR} $=$ - \overrightarrow {RQ} $
Adding vectors$\overrightarrow a $ and $\overrightarrow b $ using the equations formed
$ \overrightarrow a + \overrightarrow b = \overrightarrow c + \overrightarrow {PR} + \overrightarrow c + \overrightarrow {RQ} $
$ \because \overrightarrow {PR} = - \overrightarrow {RQ} $
$\Rightarrow \overrightarrow a + \overrightarrow b = 2\overrightarrow c $
Hence option (A) $\overrightarrow a + \overrightarrow b = 2\overrightarrow c $ is the correct answer.
Additional information: This method is also called the parallelogram method of vector addition. A similar method called the triangle method can also be used to solve the problem. The parallelogram method states that the resultant vector of two different vectors represented in magnitude, direction, by the two adjacent sides of a parallelogram both of which are directed toward or away from their point of intersection is the diagonal of the parallelogram through that point. This diagonal is the resultant vector.
Note: We can also solve this problem by making two equations of vector $\overrightarrow c $ with respect to vector $\overrightarrow a $ and with vector$\overrightarrow b $. Adding these two equations we get $\overrightarrow {2c} $ on the left-hand side and $\overrightarrow a + \overrightarrow b = \overrightarrow {2c} $ on the right-hand side, giving us the same answer.
Complete step by step answer:
From the diagram we know that vector $\overrightarrow a $ can be written as sum of vector $\overrightarrow c $ and vector $\overrightarrow {PR} $
$\overrightarrow a = \overrightarrow c + \overrightarrow {PR} $
Vector $\overrightarrow b $ can be written as the sum of vector $\overrightarrow c $ and vector $\overrightarrow {RQ} $
$\overrightarrow b = \overrightarrow c + \overrightarrow {RQ} $
Since the vectors $\overrightarrow {PR} $ and $\overrightarrow {RQ} $ are of equal magnitude and opposite in direction they can be equated as
$\overrightarrow {PR} $=$ - \overrightarrow {RQ} $
Adding vectors$\overrightarrow a $ and $\overrightarrow b $ using the equations formed
$ \overrightarrow a + \overrightarrow b = \overrightarrow c + \overrightarrow {PR} + \overrightarrow c + \overrightarrow {RQ} $
$ \because \overrightarrow {PR} = - \overrightarrow {RQ} $
$\Rightarrow \overrightarrow a + \overrightarrow b = 2\overrightarrow c $
Hence option (A) $\overrightarrow a + \overrightarrow b = 2\overrightarrow c $ is the correct answer.
Additional information: This method is also called the parallelogram method of vector addition. A similar method called the triangle method can also be used to solve the problem. The parallelogram method states that the resultant vector of two different vectors represented in magnitude, direction, by the two adjacent sides of a parallelogram both of which are directed toward or away from their point of intersection is the diagonal of the parallelogram through that point. This diagonal is the resultant vector.
Note: We can also solve this problem by making two equations of vector $\overrightarrow c $ with respect to vector $\overrightarrow a $ and with vector$\overrightarrow b $. Adding these two equations we get $\overrightarrow {2c} $ on the left-hand side and $\overrightarrow a + \overrightarrow b = \overrightarrow {2c} $ on the right-hand side, giving us the same answer.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs