
The figure shows a wire sliding on two parallel conducting rails placed at a separation $\prime I\prime $ . A magnetic field $B$ exists in a direction perpendicular to the plane of the rails. What force is necessary to keep the wire moving at a constant velocity $v$ ?
(A) $\dfrac{{{B^2}{l^2}v}}{R}$
(B) $\dfrac{{2{B^2}{l^2}v}}{R}$
(C) $\dfrac{{{B^2}{l^2}v}}{{2R}}$
(D) None of these

Answer
218.4k+ views
Hint: To solve this question, we will use the expression for magnetic Lorentz force. Also, we will need ohm’s law and Faraday's law for induced emf to find the current induced in the circuit as there is a change in the magnetic field, which results in generating induced emf in a closed loop. Then, by substituting the expression for the current in the Lorentz force equation, we can find the force.
Formula used:
$F = Bil$
$\varepsilon = Blv$
$i = \dfrac{\varepsilon }{R}$
Complete step-by-step solution:
The force experienced by the wire while moving on the parallel conducting wire through the magnetic field is given by the equation,
$F = i\left( {\vec B \times \vec l} \right)$
$F = Bil$
where $i$ is the induced current flowing through the loop.
$\vec B$ is the magnetic field.
and $\vec l$ is the length of the wire.
Now, the current developed inside the loop can be evaluated using ohm’s law.
$i = \dfrac{\varepsilon }{R}$
where emf say $\varepsilon $ is the induced emf due to change in magnetic flux as the wire is moving
and $R$ is the resistance of the loop.
Now, the induced emf is given by faraday’s law for metallic wire as,
$\varepsilon = \dfrac{{d\phi }}{{dt}}$
$ \Rightarrow \varepsilon = \dfrac{{d\left( {Blx} \right)}}{{dt}}$
where $x$ is the distance moved by the wire
$ \Rightarrow \varepsilon = Bl\dfrac{{dx}}{{dt}}$
$\therefore \varepsilon = Blv$
where, $v$ is the velocity of the wire.
At this time, substituting this value for emf in ohm’s law, we will get the current induced in the loop.
$i = \dfrac{\varepsilon }{R}$
$ \Rightarrow i = \dfrac{{Blv}}{R}$
Currently, we can compute the force essential to keep the wire moving with a constant velocity by substituting this current in the expression for Lorentz force.
$F = Bil$
Put the value of $i$ in the above equation we get,
$F = B\left( {\dfrac{{Blv}}{R}} \right)l$
$ \Rightarrow F = \dfrac{{{B^2}{l^2}v}}{R}$
Hence, the force required is found to be $\dfrac{{{B^2}{l^2}v}}{R}$ .
So, option (A) is correct.
Note: We must be having a clear memory of formulas and theories of basic laws and equations to solve. Moreover, these types of questions may come as an open circuit as an alternative to closed-loop as this question. Then no current will be flowing over the circuit and force becomes zero.
Formula used:
$F = Bil$
$\varepsilon = Blv$
$i = \dfrac{\varepsilon }{R}$
Complete step-by-step solution:
The force experienced by the wire while moving on the parallel conducting wire through the magnetic field is given by the equation,
$F = i\left( {\vec B \times \vec l} \right)$
$F = Bil$
where $i$ is the induced current flowing through the loop.
$\vec B$ is the magnetic field.
and $\vec l$ is the length of the wire.
Now, the current developed inside the loop can be evaluated using ohm’s law.
$i = \dfrac{\varepsilon }{R}$
where emf say $\varepsilon $ is the induced emf due to change in magnetic flux as the wire is moving
and $R$ is the resistance of the loop.
Now, the induced emf is given by faraday’s law for metallic wire as,
$\varepsilon = \dfrac{{d\phi }}{{dt}}$
$ \Rightarrow \varepsilon = \dfrac{{d\left( {Blx} \right)}}{{dt}}$
where $x$ is the distance moved by the wire
$ \Rightarrow \varepsilon = Bl\dfrac{{dx}}{{dt}}$
$\therefore \varepsilon = Blv$
where, $v$ is the velocity of the wire.
At this time, substituting this value for emf in ohm’s law, we will get the current induced in the loop.
$i = \dfrac{\varepsilon }{R}$
$ \Rightarrow i = \dfrac{{Blv}}{R}$
Currently, we can compute the force essential to keep the wire moving with a constant velocity by substituting this current in the expression for Lorentz force.
$F = Bil$
Put the value of $i$ in the above equation we get,
$F = B\left( {\dfrac{{Blv}}{R}} \right)l$
$ \Rightarrow F = \dfrac{{{B^2}{l^2}v}}{R}$
Hence, the force required is found to be $\dfrac{{{B^2}{l^2}v}}{R}$ .
So, option (A) is correct.
Note: We must be having a clear memory of formulas and theories of basic laws and equations to solve. Moreover, these types of questions may come as an open circuit as an alternative to closed-loop as this question. Then no current will be flowing over the circuit and force becomes zero.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

