Answer
Verified
88.5k+ views
Hint The internal resistance of the potentiometer can be determined by using the internal resistance formula of the potentiometer. The internal resistance is depending on the resistance of the resistor, distance of the two balance points in the potentiometer.
Useful formula
The expression for the internal resistance of a cell in potentiometer is given by,
$r = R\left( {\dfrac{{{l_1}}}{{{l_2}}} - 1} \right)$
Where, $r$ is the internal resistance of the cell in the potentiometer, $R$ is the resistance of the resistor, ${l_1}$ is the distance of the initial balance point and ${l_2}$ is the distance of the final balance point.
Complete step by step solution
Given that,
The voltage of the potentiometer is, $V = 2.0\,V$,
The balance point of the cell in open circuit is, ${l_1} = 76.3\,cm$,
The balance point shifts to the length of the potentiometer is, ${l_2} = 64.8\,cm$.
The resistance of the resistor is, $R = 9.5\,\Omega $
Now,
The expression for the internal resistance of a cell in potentiometer is given by,
$r = R\left( {\dfrac{{{l_1}}}{{{l_2}}} - 1} \right)\,..................\left( 1 \right)$
By substituting the resistance of the resistor, the length of the balance point of the cell in open circuit and the balance point shifts to length of the potentiometer in the above equation (1), then the above equation (1) is written as,
$r = 9.5\left( {\dfrac{{76.3}}{{64.8}} - 1} \right)$
By dividing the terms in the above equation, then
$r = 9.5\left( {1.178 - 1} \right)$
By subtracting the terms in the above equation, then
$r = 9.5\left( {0.178} \right)$
By multiplying the terms in the above equation, then
$r = 1.69\,\Omega $
Hence, the option (C) is the correct answer.
Note The internal resistance of a cell is directly proportional to the resistance of the resistor and the ratio of the length of the balancing point. If the resistance of the resistor is increasing, the internal resistance of the cell is also increasing.
Useful formula
The expression for the internal resistance of a cell in potentiometer is given by,
$r = R\left( {\dfrac{{{l_1}}}{{{l_2}}} - 1} \right)$
Where, $r$ is the internal resistance of the cell in the potentiometer, $R$ is the resistance of the resistor, ${l_1}$ is the distance of the initial balance point and ${l_2}$ is the distance of the final balance point.
Complete step by step solution
Given that,
The voltage of the potentiometer is, $V = 2.0\,V$,
The balance point of the cell in open circuit is, ${l_1} = 76.3\,cm$,
The balance point shifts to the length of the potentiometer is, ${l_2} = 64.8\,cm$.
The resistance of the resistor is, $R = 9.5\,\Omega $
Now,
The expression for the internal resistance of a cell in potentiometer is given by,
$r = R\left( {\dfrac{{{l_1}}}{{{l_2}}} - 1} \right)\,..................\left( 1 \right)$
By substituting the resistance of the resistor, the length of the balance point of the cell in open circuit and the balance point shifts to length of the potentiometer in the above equation (1), then the above equation (1) is written as,
$r = 9.5\left( {\dfrac{{76.3}}{{64.8}} - 1} \right)$
By dividing the terms in the above equation, then
$r = 9.5\left( {1.178 - 1} \right)$
By subtracting the terms in the above equation, then
$r = 9.5\left( {0.178} \right)$
By multiplying the terms in the above equation, then
$r = 1.69\,\Omega $
Hence, the option (C) is the correct answer.
Note The internal resistance of a cell is directly proportional to the resistance of the resistor and the ratio of the length of the balancing point. If the resistance of the resistor is increasing, the internal resistance of the cell is also increasing.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Assertion An electron is not deflected on passing through class 12 physics JEE_Main
A crystalline solid a Changes abruptly from solid to class 12 chemistry JEE_Main
The ratio of the diameters of certain air bubbles at class 11 physics JEE_Main