
The figure shows a $2.0\,V$ potentiometer used for the determination of internal resistance of a $1.5\,V$ cell. The balance point of the cell in the open circuit is $76.3\,cm$. When a resistor of $9.5\,\Omega $ is used in the external circuit of the cell, the balance point shifts to $64.8\,cm$ length of the potentiometer. The internal resistance of the cell is:

(A) $1.63\,\Omega $
(B) $1.66\,\Omega $
(C) $1.69\,\Omega $
(D) $1.72\,\Omega $
Answer
123.9k+ views
Hint The internal resistance of the potentiometer can be determined by using the internal resistance formula of the potentiometer. The internal resistance is depending on the resistance of the resistor, distance of the two balance points in the potentiometer.
Useful formula
The expression for the internal resistance of a cell in potentiometer is given by,
$r = R\left( {\dfrac{{{l_1}}}{{{l_2}}} - 1} \right)$
Where, $r$ is the internal resistance of the cell in the potentiometer, $R$ is the resistance of the resistor, ${l_1}$ is the distance of the initial balance point and ${l_2}$ is the distance of the final balance point.
Complete step by step solution
Given that,
The voltage of the potentiometer is, $V = 2.0\,V$,
The balance point of the cell in open circuit is, ${l_1} = 76.3\,cm$,
The balance point shifts to the length of the potentiometer is, ${l_2} = 64.8\,cm$.
The resistance of the resistor is, $R = 9.5\,\Omega $
Now,
The expression for the internal resistance of a cell in potentiometer is given by,
$r = R\left( {\dfrac{{{l_1}}}{{{l_2}}} - 1} \right)\,..................\left( 1 \right)$
By substituting the resistance of the resistor, the length of the balance point of the cell in open circuit and the balance point shifts to length of the potentiometer in the above equation (1), then the above equation (1) is written as,
$r = 9.5\left( {\dfrac{{76.3}}{{64.8}} - 1} \right)$
By dividing the terms in the above equation, then
$r = 9.5\left( {1.178 - 1} \right)$
By subtracting the terms in the above equation, then
$r = 9.5\left( {0.178} \right)$
By multiplying the terms in the above equation, then
$r = 1.69\,\Omega $
Hence, the option (C) is the correct answer.
Note The internal resistance of a cell is directly proportional to the resistance of the resistor and the ratio of the length of the balancing point. If the resistance of the resistor is increasing, the internal resistance of the cell is also increasing.
Useful formula
The expression for the internal resistance of a cell in potentiometer is given by,
$r = R\left( {\dfrac{{{l_1}}}{{{l_2}}} - 1} \right)$
Where, $r$ is the internal resistance of the cell in the potentiometer, $R$ is the resistance of the resistor, ${l_1}$ is the distance of the initial balance point and ${l_2}$ is the distance of the final balance point.
Complete step by step solution
Given that,
The voltage of the potentiometer is, $V = 2.0\,V$,
The balance point of the cell in open circuit is, ${l_1} = 76.3\,cm$,
The balance point shifts to the length of the potentiometer is, ${l_2} = 64.8\,cm$.
The resistance of the resistor is, $R = 9.5\,\Omega $
Now,
The expression for the internal resistance of a cell in potentiometer is given by,
$r = R\left( {\dfrac{{{l_1}}}{{{l_2}}} - 1} \right)\,..................\left( 1 \right)$
By substituting the resistance of the resistor, the length of the balance point of the cell in open circuit and the balance point shifts to length of the potentiometer in the above equation (1), then the above equation (1) is written as,
$r = 9.5\left( {\dfrac{{76.3}}{{64.8}} - 1} \right)$
By dividing the terms in the above equation, then
$r = 9.5\left( {1.178 - 1} \right)$
By subtracting the terms in the above equation, then
$r = 9.5\left( {0.178} \right)$
By multiplying the terms in the above equation, then
$r = 1.69\,\Omega $
Hence, the option (C) is the correct answer.
Note The internal resistance of a cell is directly proportional to the resistance of the resistor and the ratio of the length of the balancing point. If the resistance of the resistor is increasing, the internal resistance of the cell is also increasing.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
