
The favourable conditions for a spontaneous reaction are;
(A) $T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
(B) $T\Delta S > \Delta H,\Delta H = + ve,\Delta S = - ve$
(C) $T\Delta S = \Delta H,\Delta H = + ve,\Delta s = - ve$
(D) $T\Delta S = \Delta H,\Delta H = + ve,\Delta s = + ve$
Answer
216.3k+ views
Hint: Spontaneous reactions are reactions, that once started, continues by itself without further input of energy from the outside.
These spontaneous reactions are mainly accompanied by the high entropy mean high disorder in the system.
Step by step solution:
The free energy change for the spontaneous reactions is as follows.
$\Delta G = \Delta H - T\Delta S$
For spontaneous reactions the free energy change is always negative.
The reaction is spontaneous if $\Delta G < 0$.
\[\Delta H - T\Delta S < 0\]
\[T\Delta S > \Delta H\]
$T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
In option – “A”
$\Delta H$ is +ve and $\Delta S$is +ve and \[T\Delta S > \Delta H\].
$0 > \Delta H - T\Delta S$
$0 > \Delta G$
Hence, the process is spontaneous.
Therefore, the correct option –“A”.
Additional information: A spontaneous reaction is a change that has a natural tendency to happen under certain conditions. Example : Oxidation of iron
Most of the exothermic reactions tend to proceed spontaneously and endothermic reactions tend to be non – spontaneous.
The spontaneity of any reaction can be predicted by calculating Gibbs free energy .
The Gibbs free energy is indicated by the following equation.
$\Delta G = \Delta H - T\Delta S$
$\Delta G$ = Standard Gibbs free energy
$\Delta H$ = Standard enthalpy change
T = Temperature
\[\Delta S\] = Standard entropy change
If \[\Delta G < 0\] the change is spontaneous
If \[\Delta G < 0\] ,the change is non spontaneous.
Note:
- If \[\Delta H = - ve\] and \[\Delta S = + ve\] the reaction is spontaneous in forward direction.
- If \[\Delta H = + ve\] and \[\Delta S = - ve\] the reaction is spontaneous in the reverse direction.
- If \[\Delta G < 0\], the reaction is spontaneous in the forward direction.
- If \[\Delta G > 0\] , the reaction is nonspontaneous in the forward direction
- If \[\Delta G = 0\], the system will be present in equilibrium state and this reaction does not prefer any direction i.e., either back ward or forward reaction.
These spontaneous reactions are mainly accompanied by the high entropy mean high disorder in the system.
Step by step solution:
The free energy change for the spontaneous reactions is as follows.
$\Delta G = \Delta H - T\Delta S$
For spontaneous reactions the free energy change is always negative.
The reaction is spontaneous if $\Delta G < 0$.
\[\Delta H - T\Delta S < 0\]
\[T\Delta S > \Delta H\]
$T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
In option – “A”
$\Delta H$ is +ve and $\Delta S$is +ve and \[T\Delta S > \Delta H\].
$0 > \Delta H - T\Delta S$
$0 > \Delta G$
Hence, the process is spontaneous.
Therefore, the correct option –“A”.
Additional information: A spontaneous reaction is a change that has a natural tendency to happen under certain conditions. Example : Oxidation of iron
Most of the exothermic reactions tend to proceed spontaneously and endothermic reactions tend to be non – spontaneous.
The spontaneity of any reaction can be predicted by calculating Gibbs free energy .
The Gibbs free energy is indicated by the following equation.
$\Delta G = \Delta H - T\Delta S$
$\Delta G$ = Standard Gibbs free energy
$\Delta H$ = Standard enthalpy change
T = Temperature
\[\Delta S\] = Standard entropy change
If \[\Delta G < 0\] the change is spontaneous
If \[\Delta G < 0\] ,the change is non spontaneous.
Note:
- If \[\Delta H = - ve\] and \[\Delta S = + ve\] the reaction is spontaneous in forward direction.
- If \[\Delta H = + ve\] and \[\Delta S = - ve\] the reaction is spontaneous in the reverse direction.
- If \[\Delta G < 0\], the reaction is spontaneous in the forward direction.
- If \[\Delta G > 0\] , the reaction is nonspontaneous in the forward direction
- If \[\Delta G = 0\], the system will be present in equilibrium state and this reaction does not prefer any direction i.e., either back ward or forward reaction.
Recently Updated Pages
Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Haloalkanes and Haloarenes Class 12 Chemistry Chapter 6 CBSE Notes - 2025-26

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

