
The favourable conditions for a spontaneous reaction are;
(A) $T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
(B) $T\Delta S > \Delta H,\Delta H = + ve,\Delta S = - ve$
(C) $T\Delta S = \Delta H,\Delta H = + ve,\Delta s = - ve$
(D) $T\Delta S = \Delta H,\Delta H = + ve,\Delta s = + ve$
Answer
154.2k+ views
Hint: Spontaneous reactions are reactions, that once started, continues by itself without further input of energy from the outside.
These spontaneous reactions are mainly accompanied by the high entropy mean high disorder in the system.
Step by step solution:
The free energy change for the spontaneous reactions is as follows.
$\Delta G = \Delta H - T\Delta S$
For spontaneous reactions the free energy change is always negative.
The reaction is spontaneous if $\Delta G < 0$.
\[\Delta H - T\Delta S < 0\]
\[T\Delta S > \Delta H\]
$T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
In option – “A”
$\Delta H$ is +ve and $\Delta S$is +ve and \[T\Delta S > \Delta H\].
$0 > \Delta H - T\Delta S$
$0 > \Delta G$
Hence, the process is spontaneous.
Therefore, the correct option –“A”.
Additional information: A spontaneous reaction is a change that has a natural tendency to happen under certain conditions. Example : Oxidation of iron
Most of the exothermic reactions tend to proceed spontaneously and endothermic reactions tend to be non – spontaneous.
The spontaneity of any reaction can be predicted by calculating Gibbs free energy .
The Gibbs free energy is indicated by the following equation.
$\Delta G = \Delta H - T\Delta S$
$\Delta G$ = Standard Gibbs free energy
$\Delta H$ = Standard enthalpy change
T = Temperature
\[\Delta S\] = Standard entropy change
If \[\Delta G < 0\] the change is spontaneous
If \[\Delta G < 0\] ,the change is non spontaneous.
Note:
- If \[\Delta H = - ve\] and \[\Delta S = + ve\] the reaction is spontaneous in forward direction.
- If \[\Delta H = + ve\] and \[\Delta S = - ve\] the reaction is spontaneous in the reverse direction.
- If \[\Delta G < 0\], the reaction is spontaneous in the forward direction.
- If \[\Delta G > 0\] , the reaction is nonspontaneous in the forward direction
- If \[\Delta G = 0\], the system will be present in equilibrium state and this reaction does not prefer any direction i.e., either back ward or forward reaction.
These spontaneous reactions are mainly accompanied by the high entropy mean high disorder in the system.
Step by step solution:
The free energy change for the spontaneous reactions is as follows.
$\Delta G = \Delta H - T\Delta S$
For spontaneous reactions the free energy change is always negative.
The reaction is spontaneous if $\Delta G < 0$.
\[\Delta H - T\Delta S < 0\]
\[T\Delta S > \Delta H\]
$T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
In option – “A”
$\Delta H$ is +ve and $\Delta S$is +ve and \[T\Delta S > \Delta H\].
$0 > \Delta H - T\Delta S$
$0 > \Delta G$
Hence, the process is spontaneous.
Therefore, the correct option –“A”.
Additional information: A spontaneous reaction is a change that has a natural tendency to happen under certain conditions. Example : Oxidation of iron
Most of the exothermic reactions tend to proceed spontaneously and endothermic reactions tend to be non – spontaneous.
The spontaneity of any reaction can be predicted by calculating Gibbs free energy .
The Gibbs free energy is indicated by the following equation.
$\Delta G = \Delta H - T\Delta S$
$\Delta G$ = Standard Gibbs free energy
$\Delta H$ = Standard enthalpy change
T = Temperature
\[\Delta S\] = Standard entropy change
If \[\Delta G < 0\] the change is spontaneous
If \[\Delta G < 0\] ,the change is non spontaneous.
Note:
- If \[\Delta H = - ve\] and \[\Delta S = + ve\] the reaction is spontaneous in forward direction.
- If \[\Delta H = + ve\] and \[\Delta S = - ve\] the reaction is spontaneous in the reverse direction.
- If \[\Delta G < 0\], the reaction is spontaneous in the forward direction.
- If \[\Delta G > 0\] , the reaction is nonspontaneous in the forward direction
- If \[\Delta G = 0\], the system will be present in equilibrium state and this reaction does not prefer any direction i.e., either back ward or forward reaction.
Recently Updated Pages
Difference Between Alcohol and Phenol

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Classification of Drugs

In order to convert Aniline into chlorobenzene the class 12 chemistry JEE_Main

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids

JEE Main Chemistry Online Mock Test for Class 12

NCERT Solutions for Class 12 Chemistry In Hindi Chapter 10 Haloalkanes and Haloarenes In Hindi Mediem

JEE Advanced 2025 Revision Notes for Mechanics

Vant Hoff factor when benzoic acid is dissolved in class 12 chemistry JEE_Main

JEE Advanced 2025 Surface Chemistry Revision Notes
