
The expansion of a mass $m$ of an ideal gas at a constant pressure $P$ is shown by the line H. The expansion of a mass $2m$ of the same gas at a pressure $\dfrac{P}{2}$ is shown by.

(A) Line F
(B) Line G
(C) Line H
(D) Line J or line K
Answer
208.2k+ views
Hint To solve this question, we need to use the ideal gas law $PV = nRT$ to find the expression for the volume. Now by putting the value of mass and pressure in the first case we get the expression for volume ${V_1}$ and similarly for the second case, we find the expression of ${V_2}$ and the write it in terms of ${V_1}$. From the graph we can obtain the value of ${V_1}$ and hence the value of ${V_2}$. The line corresponding to the value of ${V_2}$ in the graph gives the answer.
Formula Used
In the solution of this question we use the formulae,
$PV = nRT$
where $P$ is the pressure of the gas, $V$ is the volume of the gas, $n$ is the number of moles, $R$ is the universal gas constant and $T$ is the temperature of the gas.
$n = \dfrac{m}{M}$ where $m$ is the mass and $M$ is the molar mass.
Complete step by step answer:
At any constant temperature $T$ from the gas equation, we have
$PV = {\text{constant}}$ which is given by $nRT$.
So in the first case, we are given the mass of an ideal gas is $m$. Hence, the number of moles for $m$ mass is given by, ${n_1} = \dfrac{m}{M}$ where $M$ is constant for any gas and the pressure is ${P_1} = P$.
So from the gas equation
${P_1}{V_1} = {n_1}RT$
$ \Rightarrow {V_1} = \dfrac{{{n_1}RT}}{{{P_1}}}$
Now by substituting the values of the ${P_1}$ and ${n_1}$ in the equation, we get,
${V_1} = \dfrac{{\dfrac{m}{M}RT}}{P}$
For the second case, the mass is given by $2m$ and the number of moles is, ${n_2} = \dfrac{{2m}}{M}$ and the pressure is given by, ${P_2} = \dfrac{P}{2}$.
Therefore from the gas equation,
${P_2}{V_2} = {n_2}RT$
$ \Rightarrow {V_2} = \dfrac{{{n_2}RT}}{{{P_2}}}$
So by substituting the values of ${n_2}$ and ${P_2}$ we get,
${V_2} = \dfrac{{\dfrac{{2m}}{M}RT}}{{\dfrac{P}{2}}}$
$ \Rightarrow {V_2} = 4\dfrac{{\dfrac{m}{M}RT}}{P}$
As we know have already calculated, ${V_1} = \dfrac{{\dfrac{m}{M}RT}}{P}$ so by substituting this value in the equation of ${V_2}$ we get,
${V_2} = 4{V_1}$
$ \Rightarrow \dfrac{{{V_2}}}{{{V_1}}} = 4$
In the question, it is said that the volume in the first case, ${V_1}$ is given by the line $H$. So from the graph, the volume ${V_1}$ is 2.
By substituting this value in the equation of ${V_2}$ we get,
${V_2} = 4{V_1}$
Putting the value of ${V_1}$ we get,
${V_2} = 4 \times 2 = 8$
According to the graph, the line F cuts the volume for ${V_2} = 8$.
Therefore, the answer will be line $F$, which is option A.
Note We can also solve this problem by taking the slope of the curve. Since
$PV = nRT$
$ \Rightarrow PV \propto MT$ where $M$ is constant
So we can write,
$ \Rightarrow V \propto \dfrac{M}{P}T$
So in the Volume-Temperature graph as in the question $\dfrac{M}{P}$ is the slope.
In the first case, the slope is given as 2.
For the second case, mass and pressure are $2M$ and $\dfrac{P}{2}$, respectively.
So, we get,
$V \propto \dfrac{{2M}}{{\dfrac{P}{2}}} \propto 4\dfrac{M}{P}$.
As $\dfrac{M}{P} = 2$, for the second case, the slope is $4 \times 2 = 8$.
The answer is 8.
Formula Used
In the solution of this question we use the formulae,
$PV = nRT$
where $P$ is the pressure of the gas, $V$ is the volume of the gas, $n$ is the number of moles, $R$ is the universal gas constant and $T$ is the temperature of the gas.
$n = \dfrac{m}{M}$ where $m$ is the mass and $M$ is the molar mass.
Complete step by step answer:
At any constant temperature $T$ from the gas equation, we have
$PV = {\text{constant}}$ which is given by $nRT$.
So in the first case, we are given the mass of an ideal gas is $m$. Hence, the number of moles for $m$ mass is given by, ${n_1} = \dfrac{m}{M}$ where $M$ is constant for any gas and the pressure is ${P_1} = P$.
So from the gas equation
${P_1}{V_1} = {n_1}RT$
$ \Rightarrow {V_1} = \dfrac{{{n_1}RT}}{{{P_1}}}$
Now by substituting the values of the ${P_1}$ and ${n_1}$ in the equation, we get,
${V_1} = \dfrac{{\dfrac{m}{M}RT}}{P}$
For the second case, the mass is given by $2m$ and the number of moles is, ${n_2} = \dfrac{{2m}}{M}$ and the pressure is given by, ${P_2} = \dfrac{P}{2}$.
Therefore from the gas equation,
${P_2}{V_2} = {n_2}RT$
$ \Rightarrow {V_2} = \dfrac{{{n_2}RT}}{{{P_2}}}$
So by substituting the values of ${n_2}$ and ${P_2}$ we get,
${V_2} = \dfrac{{\dfrac{{2m}}{M}RT}}{{\dfrac{P}{2}}}$
$ \Rightarrow {V_2} = 4\dfrac{{\dfrac{m}{M}RT}}{P}$
As we know have already calculated, ${V_1} = \dfrac{{\dfrac{m}{M}RT}}{P}$ so by substituting this value in the equation of ${V_2}$ we get,
${V_2} = 4{V_1}$
$ \Rightarrow \dfrac{{{V_2}}}{{{V_1}}} = 4$
In the question, it is said that the volume in the first case, ${V_1}$ is given by the line $H$. So from the graph, the volume ${V_1}$ is 2.
By substituting this value in the equation of ${V_2}$ we get,
${V_2} = 4{V_1}$
Putting the value of ${V_1}$ we get,
${V_2} = 4 \times 2 = 8$
According to the graph, the line F cuts the volume for ${V_2} = 8$.
Therefore, the answer will be line $F$, which is option A.
Note We can also solve this problem by taking the slope of the curve. Since
$PV = nRT$
$ \Rightarrow PV \propto MT$ where $M$ is constant
So we can write,
$ \Rightarrow V \propto \dfrac{M}{P}T$
So in the Volume-Temperature graph as in the question $\dfrac{M}{P}$ is the slope.
In the first case, the slope is given as 2.
For the second case, mass and pressure are $2M$ and $\dfrac{P}{2}$, respectively.
So, we get,
$V \propto \dfrac{{2M}}{{\dfrac{P}{2}}} \propto 4\dfrac{M}{P}$.
As $\dfrac{M}{P} = 2$, for the second case, the slope is $4 \times 2 = 8$.
The answer is 8.
Recently Updated Pages
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Main 2023 (April 10th Shift 2) Physics Question Paper with Answer Key

JEE Main 2022 (July 28th Shift 1) Physics Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 2) Physics Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Collision: Meaning, Types & Examples in Physics

