
The equivalent length (L) of a simple pendulum, which gives the same frequency as the compound pendulum, is: (NOTE: X is the distance of the centre of mass from the point of suspension.)
A) ${K^2}/X$
B) $({K^2}/X) + X$
C) $({K^2}/X) - X$
C) $({K^2}/2X) + X$
Answer
216.3k+ views
Hint: We all know that a compound pendulum is a rigid body allowed to oscillate about a horizontal axis passing through it. So the compound pendulum is almost simple but has an angular displacement associated with it. Derive the compound pendulum equation using necessary conditions for SHM and compare it with the equation of simple pendulum to find the right answer.
Complete step by step answer:
We know that the time period of a simple pendulum is given by:
$T = 2\pi \sqrt {\dfrac{L}{g}} $ …… (I)
Here, T is the time period, L is the length of the simple pendulum, g is the acceleration due to gravity.
We know that the time period of the compound pendulum is given by,
$T = 2\pi \sqrt {\dfrac{I}{{mgX}}} $ ……. (II)
Here, I is the moment of inertia about the point of suspension, and X is the distance of the centre of mass from the point of suspension, m is the mass of the compound pendulum.
We know that the moment of inertia about the point of suspension is given by,
$I = m{K^2} + m{X^2}$
Here, K is the radius of gyration.
We will now substitute $I = m{K^2} + m{X^2}$ in equation (II) to simplify the equation.
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} $ …… (III)
We will now compare eq(I) and eq(III) to obtain the equivalent length L.
$ \Rightarrow 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} = 2\pi \sqrt {\dfrac{L}{g}} $
We will simplify this equation further, and we will get,
$ \Rightarrow \dfrac{{{K^2} + {X^2}}}{X} = L$
$ \Rightarrow \dfrac{{{K^2}}}{X} + X = L$
Therefore, the equivalent length of the pendulum is $\dfrac{{{K^2}}}{X} + X$ , and the correct option is (B).
Note: The center of suspension and center of oscillation of a compound pendulum is interchangeable in nature for a compound pendulum. This can be practically proven using a Kater’s pendulum, also known as a reversible pendulum.
Complete step by step answer:
We know that the time period of a simple pendulum is given by:
$T = 2\pi \sqrt {\dfrac{L}{g}} $ …… (I)
Here, T is the time period, L is the length of the simple pendulum, g is the acceleration due to gravity.
We know that the time period of the compound pendulum is given by,
$T = 2\pi \sqrt {\dfrac{I}{{mgX}}} $ ……. (II)
Here, I is the moment of inertia about the point of suspension, and X is the distance of the centre of mass from the point of suspension, m is the mass of the compound pendulum.
We know that the moment of inertia about the point of suspension is given by,
$I = m{K^2} + m{X^2}$
Here, K is the radius of gyration.
We will now substitute $I = m{K^2} + m{X^2}$ in equation (II) to simplify the equation.
$ \Rightarrow T = 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} $ …… (III)
We will now compare eq(I) and eq(III) to obtain the equivalent length L.
$ \Rightarrow 2\pi \sqrt {\dfrac{{m{K^2} + m{X^2}}}{{mgX}}} = 2\pi \sqrt {\dfrac{L}{g}} $
We will simplify this equation further, and we will get,
$ \Rightarrow \dfrac{{{K^2} + {X^2}}}{X} = L$
$ \Rightarrow \dfrac{{{K^2}}}{X} + X = L$
Therefore, the equivalent length of the pendulum is $\dfrac{{{K^2}}}{X} + X$ , and the correct option is (B).
Note: The center of suspension and center of oscillation of a compound pendulum is interchangeable in nature for a compound pendulum. This can be practically proven using a Kater’s pendulum, also known as a reversible pendulum.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

Two identical balls are projected one vertically up class 11 physics JEE_MAIN

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Work Energy and Power Class 11 Physics Chapter 5 CBSE Notes - 2025-26

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

