
The equation of a travelling sound wave is $y = 6.0\sin (600t - 1.8x)$ where $y$ is measured in ${10^{ - 5\,}}\,m$, $t$ in second and $x$ in meter.
(a) Find the ratio of the displacement amplitude of the particles to the wavelength of the wave.
(b) Find the ratio of the velocity amplitude of the particles to the wave speed.
Answer
162k+ views
Hint: The equation for the oscillating wave is given as $y = A\sin (\omega t - K) + b$. where. $A$ = Displacement amplitude, $\omega $ is the wavelength, $t$ is the time, $K$ is some arbitrary constant representing time offset, $b$ is arbitrary displacement offset. Comparing the given equation with this equation, we can easily find the given values. Ratio of displacement is given as $\dfrac{A}{\lambda }$. The maximum velocity of a particle is known as velocity amplitude. The wave speed is calculated using the relation between velocity, frequency and wavelength.
Complete step by step solution:
The given relation is: $y = 6.0\sin (600t - 1.8x)$ comparing this with the equation of oscillating wave, $x = A\sin (\omega t - K) + b$ we have:
\[A = 6.0\]
\[\omega = 600\]
\[K = 1.8\]
Since, we are given that the displacement is in the order of ${10^{ - 5\,}}\,m$. Therefore, we can have the amplitude as:
\[A = 6.0 \times {10^{ - 5}}\,m\]
The wavelength \[\lambda \] is given as:
\[\lambda = \dfrac{{2\pi }}{K}\]
Substituting the values, we get:
\[\lambda = \dfrac{{2\pi }}{{1.8}}\] …………………………………...equation \[(1)\]
The displacement amplitude is given as \[\dfrac{A}{\lambda }\] , substituting the value of amplitude and wavelength, we get:
\[\dfrac{A}{\lambda } = \dfrac{{6 \times {{10}^{ - 5}}}}{{\dfrac{{2\pi }}{{1.8}}}}\]
\[ \Rightarrow \dfrac{A}{\lambda } = \dfrac{{5.4 \times {{10}^{ - 5}}}}{\pi }\]
\[ \Rightarrow \dfrac{A}{\lambda } = 1.7 \times {10^{ - 5}}\]
Therefore, the ratio of the displacement amplitude of the particles to the wavelength of the wave is \[1.7 \times {10^{ - 5}}\]
To find the ratio of the velocity amplitude of the particles to the wave speed, let us find the velocity of the particle and the wave speed.
As, velocity is rate of change of displacement thus, differentiating the equation of displacement we will get the velocity of the particle.
\[v = \dfrac{{dy}}{{dt}}\]
Here, \[v\] is the velocity of the particle.
\[ \Rightarrow v = \dfrac{{d\left( {6.0\sin (600t - 1.8x)} \right)}}{{dt}}\]
\[ \Rightarrow v = 3600\cos (600t - 1.8x) \times {10^{ - 5}}\]
This velocity will be maximum when the value of cosine is maximum. The maximum value of cosine is $1$ . Therefore, the maximum velocity will be
\[ \Rightarrow v = 3600(1) \times {10^{ - 5}}\]
\[ \Rightarrow v = 3600 \times {10^{ - 5}}\,m\,{s^{ - 1}}\] ………………………….equation \[(2)\]
Now, for the speed of the wave, we have
\[\omega = 600\]
But \[\omega = 2\pi f\] , \[f\] is the frequency. Thus, the frequency will be:
\[f = \dfrac{\omega }{{2\pi }}\]
Substituting the values, we get
\[f = \dfrac{{600}}{{2\pi }}\]
The wave speed \[{v_s}\] is given \[{v_s} = f \times \lambda \] .
\[ \Rightarrow {v_s} = \dfrac{{600}}{{2\pi }} \times \dfrac{{2\pi }}{{1.8}}\]
\[ \Rightarrow {v_s} = \dfrac{{1000}}{3}\,m\,{s^{ - 1}}\] …………………..equation \[(3)\]
Dividing equation \[2\] by equation \[3\] , we will get the ratio of the velocity amplitude of the particles to the wave speed.
\[\dfrac{v}{{{v_s}}} = \dfrac{{3600 \times {{10}^{ - 5}}}}{{\dfrac{{1000}}{3}}}\]
\[\dfrac{v}{{{v_s}}} = 1.08 \times {10^{ - 4}}\]
Therefore, the ratio of the displacement amplitude of the particles to the wavelength of the wave is \[\dfrac{A}{\lambda } = 1.7 \times {10^{ - 5}}\] and ratio of the velocity amplitude of the particles to the wave speed is \[\dfrac{v}{{{v_s}}} = 1.08 \times {10^{ - 4}}\].
Note: The ratio will be a dimensionless quantity. Comparing the term with the general equation, we get the value of various variables. The equation of the velocity of the particle is obtained by differentiating the equation of the displacement with respect to time. The wave speed is calculated using the relation between speed, frequency and wavelength. The magnitude of displacement is given as ${10^{ - 5\,}}\,m$.
Complete step by step solution:
The given relation is: $y = 6.0\sin (600t - 1.8x)$ comparing this with the equation of oscillating wave, $x = A\sin (\omega t - K) + b$ we have:
\[A = 6.0\]
\[\omega = 600\]
\[K = 1.8\]
Since, we are given that the displacement is in the order of ${10^{ - 5\,}}\,m$. Therefore, we can have the amplitude as:
\[A = 6.0 \times {10^{ - 5}}\,m\]
The wavelength \[\lambda \] is given as:
\[\lambda = \dfrac{{2\pi }}{K}\]
Substituting the values, we get:
\[\lambda = \dfrac{{2\pi }}{{1.8}}\] …………………………………...equation \[(1)\]
The displacement amplitude is given as \[\dfrac{A}{\lambda }\] , substituting the value of amplitude and wavelength, we get:
\[\dfrac{A}{\lambda } = \dfrac{{6 \times {{10}^{ - 5}}}}{{\dfrac{{2\pi }}{{1.8}}}}\]
\[ \Rightarrow \dfrac{A}{\lambda } = \dfrac{{5.4 \times {{10}^{ - 5}}}}{\pi }\]
\[ \Rightarrow \dfrac{A}{\lambda } = 1.7 \times {10^{ - 5}}\]
Therefore, the ratio of the displacement amplitude of the particles to the wavelength of the wave is \[1.7 \times {10^{ - 5}}\]
To find the ratio of the velocity amplitude of the particles to the wave speed, let us find the velocity of the particle and the wave speed.
As, velocity is rate of change of displacement thus, differentiating the equation of displacement we will get the velocity of the particle.
\[v = \dfrac{{dy}}{{dt}}\]
Here, \[v\] is the velocity of the particle.
\[ \Rightarrow v = \dfrac{{d\left( {6.0\sin (600t - 1.8x)} \right)}}{{dt}}\]
\[ \Rightarrow v = 3600\cos (600t - 1.8x) \times {10^{ - 5}}\]
This velocity will be maximum when the value of cosine is maximum. The maximum value of cosine is $1$ . Therefore, the maximum velocity will be
\[ \Rightarrow v = 3600(1) \times {10^{ - 5}}\]
\[ \Rightarrow v = 3600 \times {10^{ - 5}}\,m\,{s^{ - 1}}\] ………………………….equation \[(2)\]
Now, for the speed of the wave, we have
\[\omega = 600\]
But \[\omega = 2\pi f\] , \[f\] is the frequency. Thus, the frequency will be:
\[f = \dfrac{\omega }{{2\pi }}\]
Substituting the values, we get
\[f = \dfrac{{600}}{{2\pi }}\]
The wave speed \[{v_s}\] is given \[{v_s} = f \times \lambda \] .
\[ \Rightarrow {v_s} = \dfrac{{600}}{{2\pi }} \times \dfrac{{2\pi }}{{1.8}}\]
\[ \Rightarrow {v_s} = \dfrac{{1000}}{3}\,m\,{s^{ - 1}}\] …………………..equation \[(3)\]
Dividing equation \[2\] by equation \[3\] , we will get the ratio of the velocity amplitude of the particles to the wave speed.
\[\dfrac{v}{{{v_s}}} = \dfrac{{3600 \times {{10}^{ - 5}}}}{{\dfrac{{1000}}{3}}}\]
\[\dfrac{v}{{{v_s}}} = 1.08 \times {10^{ - 4}}\]
Therefore, the ratio of the displacement amplitude of the particles to the wavelength of the wave is \[\dfrac{A}{\lambda } = 1.7 \times {10^{ - 5}}\] and ratio of the velocity amplitude of the particles to the wave speed is \[\dfrac{v}{{{v_s}}} = 1.08 \times {10^{ - 4}}\].
Note: The ratio will be a dimensionless quantity. Comparing the term with the general equation, we get the value of various variables. The equation of the velocity of the particle is obtained by differentiating the equation of the displacement with respect to time. The wave speed is calculated using the relation between speed, frequency and wavelength. The magnitude of displacement is given as ${10^{ - 5\,}}\,m$.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
