Answer
Verified
88.2k+ views
Hint: the fact that at boiling point of the liquid, liquid & its vapor are in equilibrium i.e. vapor is in equilibrium at one atmospheric pressure. We know that at equilibrium, Gibbs energy change is zero. ie $\Delta G = 0$.
Complete step by step solution:
It is given that Enthalpy of vaporization is 30 Kilojoules per mole.
i.e. $\Delta H$ = enthalpy of vaporization = 30000 $Jmo{l^{ - 1}}$
It is also given that Entropy of vaporization is 75$Jmo{l^{ - 1}}{K^{ - 1}}$
i.e. $\Delta S$ = entropy of vaporization = 75 $Jmo{l^{ - 1}}{K^{ - 1}}$
We know at boiling point of the liquid, vapor is in equilibrium (at one atmospheric pressure) which implies that,
Gibbs energy change is equal to zero.
i.e $\Delta G = 0$
We know that,
$\Delta G = \Delta H - T\Delta S$
Substituting the values in the equation we get,
0 = 30000 – 75T
$\therefore T = \dfrac{{3000Jmo{l^{ - 1}}}}{{75Jmo{l^{ - 1}}{K^{ - 1}}}}$
Therefore, we get;
T = 400 K
∴ Boiling point of the liquid at one atmospheric pressure is 400k.
∴ Correct option - B. 400k.
Additional information:
The change in free energy occurs when a compound is formed from its elements in their most thermodynamically stable state at standard state conditions i.e. 1 atm.In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of irreversible work that may be performed by a thermodynamic system at a constant temperature and pressure.The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a thermodynamic closed system. This maximum can be attained only in a completely reversible process.
Note: Enthalpy of vaporization is the amount of energy that must be added to the liquid substance, to transform a quantity of that substance into gas. Entropy of vaporization is an increase in entropy upon vaporization of a liquid.
Complete step by step solution:
It is given that Enthalpy of vaporization is 30 Kilojoules per mole.
i.e. $\Delta H$ = enthalpy of vaporization = 30000 $Jmo{l^{ - 1}}$
It is also given that Entropy of vaporization is 75$Jmo{l^{ - 1}}{K^{ - 1}}$
i.e. $\Delta S$ = entropy of vaporization = 75 $Jmo{l^{ - 1}}{K^{ - 1}}$
We know at boiling point of the liquid, vapor is in equilibrium (at one atmospheric pressure) which implies that,
Gibbs energy change is equal to zero.
i.e $\Delta G = 0$
We know that,
$\Delta G = \Delta H - T\Delta S$
Substituting the values in the equation we get,
0 = 30000 – 75T
$\therefore T = \dfrac{{3000Jmo{l^{ - 1}}}}{{75Jmo{l^{ - 1}}{K^{ - 1}}}}$
Therefore, we get;
T = 400 K
∴ Boiling point of the liquid at one atmospheric pressure is 400k.
∴ Correct option - B. 400k.
Additional information:
The change in free energy occurs when a compound is formed from its elements in their most thermodynamically stable state at standard state conditions i.e. 1 atm.In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of irreversible work that may be performed by a thermodynamic system at a constant temperature and pressure.The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a thermodynamic closed system. This maximum can be attained only in a completely reversible process.
Note: Enthalpy of vaporization is the amount of energy that must be added to the liquid substance, to transform a quantity of that substance into gas. Entropy of vaporization is an increase in entropy upon vaporization of a liquid.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Assertion An electron is not deflected on passing through class 12 physics JEE_Main
A crystalline solid a Changes abruptly from solid to class 12 chemistry JEE_Main
The ratio of the diameters of certain air bubbles at class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main