
The enthalpy of vaporization of a liquid is 30$KJmo{l^{ - 1}}$ and the entropy of vaporization is 75$Jmo{l^{ - 1}}{K^{ - 1}}$ . Find the boiling point of the liquid at 1 atm.
A. 250k
B. 400k
C. 450k
D. 600k
Answer
222.9k+ views
Hint: the fact that at boiling point of the liquid, liquid & its vapor are in equilibrium i.e. vapor is in equilibrium at one atmospheric pressure. We know that at equilibrium, Gibbs energy change is zero. ie $\Delta G = 0$.
Complete step by step solution:
It is given that Enthalpy of vaporization is 30 Kilojoules per mole.
i.e. $\Delta H$ = enthalpy of vaporization = 30000 $Jmo{l^{ - 1}}$
It is also given that Entropy of vaporization is 75$Jmo{l^{ - 1}}{K^{ - 1}}$
i.e. $\Delta S$ = entropy of vaporization = 75 $Jmo{l^{ - 1}}{K^{ - 1}}$
We know at boiling point of the liquid, vapor is in equilibrium (at one atmospheric pressure) which implies that,
Gibbs energy change is equal to zero.
i.e $\Delta G = 0$
We know that,
$\Delta G = \Delta H - T\Delta S$
Substituting the values in the equation we get,
0 = 30000 – 75T
$\therefore T = \dfrac{{3000Jmo{l^{ - 1}}}}{{75Jmo{l^{ - 1}}{K^{ - 1}}}}$
Therefore, we get;
T = 400 K
∴ Boiling point of the liquid at one atmospheric pressure is 400k.
∴ Correct option - B. 400k.
Additional information:
The change in free energy occurs when a compound is formed from its elements in their most thermodynamically stable state at standard state conditions i.e. 1 atm.In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of irreversible work that may be performed by a thermodynamic system at a constant temperature and pressure.The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a thermodynamic closed system. This maximum can be attained only in a completely reversible process.
Note: Enthalpy of vaporization is the amount of energy that must be added to the liquid substance, to transform a quantity of that substance into gas. Entropy of vaporization is an increase in entropy upon vaporization of a liquid.
Complete step by step solution:
It is given that Enthalpy of vaporization is 30 Kilojoules per mole.
i.e. $\Delta H$ = enthalpy of vaporization = 30000 $Jmo{l^{ - 1}}$
It is also given that Entropy of vaporization is 75$Jmo{l^{ - 1}}{K^{ - 1}}$
i.e. $\Delta S$ = entropy of vaporization = 75 $Jmo{l^{ - 1}}{K^{ - 1}}$
We know at boiling point of the liquid, vapor is in equilibrium (at one atmospheric pressure) which implies that,
Gibbs energy change is equal to zero.
i.e $\Delta G = 0$
We know that,
$\Delta G = \Delta H - T\Delta S$
Substituting the values in the equation we get,
0 = 30000 – 75T
$\therefore T = \dfrac{{3000Jmo{l^{ - 1}}}}{{75Jmo{l^{ - 1}}{K^{ - 1}}}}$
Therefore, we get;
T = 400 K
∴ Boiling point of the liquid at one atmospheric pressure is 400k.
∴ Correct option - B. 400k.
Additional information:
The change in free energy occurs when a compound is formed from its elements in their most thermodynamically stable state at standard state conditions i.e. 1 atm.In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of irreversible work that may be performed by a thermodynamic system at a constant temperature and pressure.The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a thermodynamic closed system. This maximum can be attained only in a completely reversible process.
Note: Enthalpy of vaporization is the amount of energy that must be added to the liquid substance, to transform a quantity of that substance into gas. Entropy of vaporization is an increase in entropy upon vaporization of a liquid.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

