
The energy spectrum of a black body exhibits a maximum energy around a wavelength \[{\lambda _o}\] . The temperature of the black body is now changed such that the energy is maximum around a wavelength \[\dfrac{{3{\lambda _o}}}{4}\] .The power radiated by the black body will now increase by a factor of:
(A) \[\dfrac{{256}}{{81}}\]
(B) \[\dfrac{{64}}{{27}}\]
(C) \[\dfrac{{16}}{9}\]
(D) \[\dfrac{4}{3}\]
Answer
225k+ views
Hint We first use wien's displacement law to calculate the ratio of temperatures of both the bodies as energy and wavelength present so this law is applicable.
Then we use Stefan’s law as when there is power radiated, we use this law. By the use of Stefan’s law, we will find energy radiated per unit time per unit area i.e. E.
Then we will find the ratio of energy radiated for both the bodies and equate with the other values obtained and find the correct option.
Complete step by step solution
We know that when there is maximum energy and wavelength present, we use the concept of Wein’s displacement law.
According to Wien's displacement law, wavelength corresponding to maximum energy decreases when the temperature of black body increases i.e. \[\lambda T = b\] , where b is constant, \[\lambda \] is the wavelength and T is the temperature.
So, we can write Wien's displacement law for both the temperature i.e. \[{\lambda _1}{T_1} = {\lambda _2}{T_2}\]
So \[\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{\lambda _1}}}{{{\lambda _2}}}\] , now we will put the value of wavelength given in the question.
\[\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{\lambda _o}}}{{\dfrac{{3{\lambda _o}}}{4}}}\] , so \[\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{4}{3}\] .
And also, we know when there comes power radiated, we use Stefan’s law:
Energy radiated per unit time per unit area i.e. \[E = \sigma {T^4}\] , where \[\sigma \] is Stephan-Boltzmann constant. T is the temperature.
So, for first body \[{E_1} = \sigma {T_1}^4\] and for second body \[{E_2} = \sigma {T_2}^4\]
It is said that power radiated by the black body will now increase by a factor in the question. So, we get \[\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}}\] ;
\[\dfrac{{{E_1}}}{{{E_2}}} = {\left( {\dfrac{{{T_1}}}{{{T_2}}}} \right)^4}\] . Now we put the value \[\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{4}{3}\]
So, we get \[\dfrac{{{E_2}}}{{{E_1}}} = {\left( {\dfrac{4}{3}} \right)^4} = \dfrac{{256}}{{81}}\] .
So, the correct option is A
Note Remember the formula of both Wien's displacement law and Stefan's Law and also remember when to apply these laws.
Note that Stefan's Law clarifies that total radiant heat energy emerging from a surface is proportional to the fourth power of its absolute temperature.
Also remember Stefan-Boltzmann law applies only to blackbodies, surfaces that absorb all incident heat radiation
Then we use Stefan’s law as when there is power radiated, we use this law. By the use of Stefan’s law, we will find energy radiated per unit time per unit area i.e. E.
Then we will find the ratio of energy radiated for both the bodies and equate with the other values obtained and find the correct option.
Complete step by step solution
We know that when there is maximum energy and wavelength present, we use the concept of Wein’s displacement law.
According to Wien's displacement law, wavelength corresponding to maximum energy decreases when the temperature of black body increases i.e. \[\lambda T = b\] , where b is constant, \[\lambda \] is the wavelength and T is the temperature.
So, we can write Wien's displacement law for both the temperature i.e. \[{\lambda _1}{T_1} = {\lambda _2}{T_2}\]
So \[\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{\lambda _1}}}{{{\lambda _2}}}\] , now we will put the value of wavelength given in the question.
\[\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{\lambda _o}}}{{\dfrac{{3{\lambda _o}}}{4}}}\] , so \[\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{4}{3}\] .
And also, we know when there comes power radiated, we use Stefan’s law:
Energy radiated per unit time per unit area i.e. \[E = \sigma {T^4}\] , where \[\sigma \] is Stephan-Boltzmann constant. T is the temperature.
So, for first body \[{E_1} = \sigma {T_1}^4\] and for second body \[{E_2} = \sigma {T_2}^4\]
It is said that power radiated by the black body will now increase by a factor in the question. So, we get \[\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{{T_1}^4}}{{{T_2}^4}}\] ;
\[\dfrac{{{E_1}}}{{{E_2}}} = {\left( {\dfrac{{{T_1}}}{{{T_2}}}} \right)^4}\] . Now we put the value \[\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{4}{3}\]
So, we get \[\dfrac{{{E_2}}}{{{E_1}}} = {\left( {\dfrac{4}{3}} \right)^4} = \dfrac{{256}}{{81}}\] .
So, the correct option is A
Note Remember the formula of both Wien's displacement law and Stefan's Law and also remember when to apply these laws.
Note that Stefan's Law clarifies that total radiant heat energy emerging from a surface is proportional to the fourth power of its absolute temperature.
Also remember Stefan-Boltzmann law applies only to blackbodies, surfaces that absorb all incident heat radiation
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

