
The empirical formula of a compound containing 47.9% potassium, 5.5% beryllium and 46.6% fluorine by mass is-
[Atomic weight of $Be$ =9; $F$=19; $K$=39]
A. $K_2BeF_2$
B. $KBeF_4$
C. $K_2Be_2F_4$
D. $K_2BeF_4$
Answer
220.8k+ views
Hint: The empirical formula of a compound represents the ratio of elements present in that compound and doesn’t take into consideration the actual numbers of atoms found in the molecule. These ratios are represented by subscripts next to the elemental symbols.
Step-by-step solution: The empirical formula and molecular formula are two different concepts. So, first let’s try to differentiate between these two.
An empirical formula is the simplest method of expressing the elemental composition of a compound and can be derived by using the mass or weight percentage data of the elements present in the compound.
On the other hand, the molecular formula represents the actual composition of elements contained in a given compound. It can be derived by making use of empirical formula.
In order to calculate the empirical formula of the compound from the data given in the question, we need to follow the following steps-
Step1- By making use of atomic weights and percentage composition, we will first calculate the moles composition. For determining the relative numbers of moles of each element present in the compound, we will use the relation,
Relative no. of moles= (given mass composition of element)/ (atomic mass of element)
We will calculate the relative number of moles for beryllium, potassium and fluorine by using the above relation and then we will write the respective values in column IV of the table.
Step2- By making use of moles composition that we have calculated in the above step now we will calculate the smallest whole number ratio of atoms. For this, first we will find out the smallest number from column IV, and then divide every data of column IV with that smallest number.
Here, 0.6 is the smallest number out of 1.2, 0.6 and 2.4. So, we will divide 1.2/0.6, 0.6/0.6 and 2.4/0.6
The respective answers have been then entered into our last column, i.e., 2, 1, 4, respectively.
By using this simplest ratios of potassium ($K$ ), beryllium ($Be$ ) and fluorine ($F$ ), as the subscripts, we can write our empirical formula as $K_2BeF_4$
So, the correct option is D.
Note:
● Sometimes determining the whole number ratio can be tricky and we will need to use trial and error to get the correct value. For example, if we are getting 1.5 for a solution, then we need to multiply each number in the problem by 2 in order to make the 1.5 into 3.
● By making use of the empirical formula, we can easily calculate the molecular formula if we know the molar mass of the compound, by using the relation,
Ratio= (molar mass of the compound) / (empirical formula mass)
By multiplying all of the subscripts present in empirical formula by the above calculated ratio, we can obtain the molecular formula.
Step-by-step solution: The empirical formula and molecular formula are two different concepts. So, first let’s try to differentiate between these two.
An empirical formula is the simplest method of expressing the elemental composition of a compound and can be derived by using the mass or weight percentage data of the elements present in the compound.
On the other hand, the molecular formula represents the actual composition of elements contained in a given compound. It can be derived by making use of empirical formula.
In order to calculate the empirical formula of the compound from the data given in the question, we need to follow the following steps-
Step1- By making use of atomic weights and percentage composition, we will first calculate the moles composition. For determining the relative numbers of moles of each element present in the compound, we will use the relation,
Relative no. of moles= (given mass composition of element)/ (atomic mass of element)
We will calculate the relative number of moles for beryllium, potassium and fluorine by using the above relation and then we will write the respective values in column IV of the table.
Step2- By making use of moles composition that we have calculated in the above step now we will calculate the smallest whole number ratio of atoms. For this, first we will find out the smallest number from column IV, and then divide every data of column IV with that smallest number.
Here, 0.6 is the smallest number out of 1.2, 0.6 and 2.4. So, we will divide 1.2/0.6, 0.6/0.6 and 2.4/0.6
The respective answers have been then entered into our last column, i.e., 2, 1, 4, respectively.
| Name of the Elements | Percentage composition (%) | Atomic weights of elements(g) | Relative number of moles | Simplest ratio |
| Potassium | 47.9 | 39 | 47.9/39= 1.2 | 1.2/0.6= 2 |
| Beryllium | 5.5 | 9 | 5.5/9= 0.6 | 0.6/0.6= 1 |
| Fluorine | 46.6 | 19 | 46.6/19= 2.4 | 2.4/0.6= 4 |
By using this simplest ratios of potassium ($K$ ), beryllium ($Be$ ) and fluorine ($F$ ), as the subscripts, we can write our empirical formula as $K_2BeF_4$
So, the correct option is D.
Note:
● Sometimes determining the whole number ratio can be tricky and we will need to use trial and error to get the correct value. For example, if we are getting 1.5 for a solution, then we need to multiply each number in the problem by 2 in order to make the 1.5 into 3.
● By making use of the empirical formula, we can easily calculate the molecular formula if we know the molar mass of the compound, by using the relation,
Ratio= (molar mass of the compound) / (empirical formula mass)
By multiplying all of the subscripts present in empirical formula by the above calculated ratio, we can obtain the molecular formula.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

