
The element of second row and third column in the inverse of $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is
A. $-2$
B. $-1$
C. $1$
D. $2$
Answer
164.1k+ views
Hint: To find the element of second row and third column in the inverse of the matrix of $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$, we will find the inverse of this matrix and select the element ${{a}_{23}}$. We will first calculate the determinant and the adjoint of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ . Then we will substitute the values in the formula of the inverse.
Formula Used: \[{{A}^{-1}}=\frac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)\,$ then
$\begin{align}
& |A|=a\left( \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right)-b\left( \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right)+c\left( \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right) \\
& =a(ei-fh)-b(di-fg)+c(dh-eg)
\end{align}$.
Complete step by step solution: We are given a matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ and we have to find the element of second row and third column in the inverse of this matrix.
We will find the inverse of this matrix. To do that first we will calculate the determinant and adjoint of the matrix.
Let us assume this matrix be $A=\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ so the determinant will be,
$|A|=1(1-0)-2(2-0)+1(0+1)$
$\begin{align}
& |A|=1-4+1 \\
& \,\,\,\,\,\,\,=-2 \\
\end{align}$
Now we will find adjoint of the matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix.
The cofactor of the matrix is,
$A=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{12}} & +{{A}_{13}} \\
-{{A}_{21}} & +{{A}_{22}} & -{{A}_{23}} \\
+{{A}_{31}} & -{{A}_{32}} & +{{A}_{33}} \\
\end{matrix} \right)$
The transpose of the cofactor of the matrix will be,
${{A}^{T}}=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)$
We will now find the inverse of the matrix,
\[{{A}^{-1}}=\frac{1}{-2}\,\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)\]
We have to find the element of the second row and third column so we will select that element from the cofactor,
\[{{({{A}^{-1}})}_{23}}=\frac{-{{A}_{32}}}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left( \begin{matrix}
1 & 1 \\
2 & 0 \\
\end{matrix} \right)}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left[ 0-2 \right]}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{2}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=-1\]
The value of the element of second row and third column in the inverse of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is \[{{({{A}^{-1}})}_{23}}=-1\]
Option ‘B’ is correct
Note:The transpose of the matrix is calculated by interchanging the element of the principal diagonal and only changing the sign of the other diagonal.
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$, we will find the inverse of this matrix and select the element ${{a}_{23}}$. We will first calculate the determinant and the adjoint of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ . Then we will substitute the values in the formula of the inverse.
Formula Used: \[{{A}^{-1}}=\frac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)\,$ then
$\begin{align}
& |A|=a\left( \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right)-b\left( \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right)+c\left( \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right) \\
& =a(ei-fh)-b(di-fg)+c(dh-eg)
\end{align}$.
Complete step by step solution: We are given a matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ and we have to find the element of second row and third column in the inverse of this matrix.
We will find the inverse of this matrix. To do that first we will calculate the determinant and adjoint of the matrix.
Let us assume this matrix be $A=\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ so the determinant will be,
$|A|=1(1-0)-2(2-0)+1(0+1)$
$\begin{align}
& |A|=1-4+1 \\
& \,\,\,\,\,\,\,=-2 \\
\end{align}$
Now we will find adjoint of the matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix.
The cofactor of the matrix is,
$A=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{12}} & +{{A}_{13}} \\
-{{A}_{21}} & +{{A}_{22}} & -{{A}_{23}} \\
+{{A}_{31}} & -{{A}_{32}} & +{{A}_{33}} \\
\end{matrix} \right)$
The transpose of the cofactor of the matrix will be,
${{A}^{T}}=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)$
We will now find the inverse of the matrix,
\[{{A}^{-1}}=\frac{1}{-2}\,\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)\]
We have to find the element of the second row and third column so we will select that element from the cofactor,
\[{{({{A}^{-1}})}_{23}}=\frac{-{{A}_{32}}}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left( \begin{matrix}
1 & 1 \\
2 & 0 \\
\end{matrix} \right)}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left[ 0-2 \right]}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{2}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=-1\]
The value of the element of second row and third column in the inverse of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is \[{{({{A}^{-1}})}_{23}}=-1\]
Option ‘B’ is correct
Note:The transpose of the matrix is calculated by interchanging the element of the principal diagonal and only changing the sign of the other diagonal.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
