
The element of second row and third column in the inverse of $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is
A. $-2$
B. $-1$
C. $1$
D. $2$
Answer
183.9k+ views
Hint: To find the element of second row and third column in the inverse of the matrix of $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$, we will find the inverse of this matrix and select the element ${{a}_{23}}$. We will first calculate the determinant and the adjoint of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ . Then we will substitute the values in the formula of the inverse.
Formula Used: \[{{A}^{-1}}=\frac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)\,$ then
$\begin{align}
& |A|=a\left( \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right)-b\left( \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right)+c\left( \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right) \\
& =a(ei-fh)-b(di-fg)+c(dh-eg)
\end{align}$.
Complete step by step solution: We are given a matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ and we have to find the element of second row and third column in the inverse of this matrix.
We will find the inverse of this matrix. To do that first we will calculate the determinant and adjoint of the matrix.
Let us assume this matrix be $A=\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ so the determinant will be,
$|A|=1(1-0)-2(2-0)+1(0+1)$
$\begin{align}
& |A|=1-4+1 \\
& \,\,\,\,\,\,\,=-2 \\
\end{align}$
Now we will find adjoint of the matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix.
The cofactor of the matrix is,
$A=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{12}} & +{{A}_{13}} \\
-{{A}_{21}} & +{{A}_{22}} & -{{A}_{23}} \\
+{{A}_{31}} & -{{A}_{32}} & +{{A}_{33}} \\
\end{matrix} \right)$
The transpose of the cofactor of the matrix will be,
${{A}^{T}}=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)$
We will now find the inverse of the matrix,
\[{{A}^{-1}}=\frac{1}{-2}\,\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)\]
We have to find the element of the second row and third column so we will select that element from the cofactor,
\[{{({{A}^{-1}})}_{23}}=\frac{-{{A}_{32}}}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left( \begin{matrix}
1 & 1 \\
2 & 0 \\
\end{matrix} \right)}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left[ 0-2 \right]}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{2}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=-1\]
The value of the element of second row and third column in the inverse of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is \[{{({{A}^{-1}})}_{23}}=-1\]
Option ‘B’ is correct
Note:The transpose of the matrix is calculated by interchanging the element of the principal diagonal and only changing the sign of the other diagonal.
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$, we will find the inverse of this matrix and select the element ${{a}_{23}}$. We will first calculate the determinant and the adjoint of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ . Then we will substitute the values in the formula of the inverse.
Formula Used: \[{{A}^{-1}}=\frac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)\,$ then
$\begin{align}
& |A|=a\left( \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right)-b\left( \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right)+c\left( \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right) \\
& =a(ei-fh)-b(di-fg)+c(dh-eg)
\end{align}$.
Complete step by step solution: We are given a matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ and we have to find the element of second row and third column in the inverse of this matrix.
We will find the inverse of this matrix. To do that first we will calculate the determinant and adjoint of the matrix.
Let us assume this matrix be $A=\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ so the determinant will be,
$|A|=1(1-0)-2(2-0)+1(0+1)$
$\begin{align}
& |A|=1-4+1 \\
& \,\,\,\,\,\,\,=-2 \\
\end{align}$
Now we will find adjoint of the matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix.
The cofactor of the matrix is,
$A=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{12}} & +{{A}_{13}} \\
-{{A}_{21}} & +{{A}_{22}} & -{{A}_{23}} \\
+{{A}_{31}} & -{{A}_{32}} & +{{A}_{33}} \\
\end{matrix} \right)$
The transpose of the cofactor of the matrix will be,
${{A}^{T}}=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)$
We will now find the inverse of the matrix,
\[{{A}^{-1}}=\frac{1}{-2}\,\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)\]
We have to find the element of the second row and third column so we will select that element from the cofactor,
\[{{({{A}^{-1}})}_{23}}=\frac{-{{A}_{32}}}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left( \begin{matrix}
1 & 1 \\
2 & 0 \\
\end{matrix} \right)}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left[ 0-2 \right]}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{2}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=-1\]
The value of the element of second row and third column in the inverse of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is \[{{({{A}^{-1}})}_{23}}=-1\]
Option ‘B’ is correct
Note:The transpose of the matrix is calculated by interchanging the element of the principal diagonal and only changing the sign of the other diagonal.
Recently Updated Pages
Difference Between Area and Volume

Difference Between Mutually Exclusive and Independent Events

Electron Gain Enthalpy vs Electron Affinity: Key Differences, Trends & Table

JEE Main 2022 June 24 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

Centre of Mass of Semicircular Ring: Formula, Derivation & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Displacement and Velocity-Time Graphs: Concepts, Differences & Application

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
NCERT Solutions For Class 11 Maths Chapter 4 Complex Numbers And Quadratic Equations - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 6 Permutations And Combinations - 2025-26

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series - 2025-26

NCERT Solutions For Class 11 Maths Chapter 5 Linear Inequalities - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter
