
The element of second row and third column in the inverse of $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is
A. $-2$
B. $-1$
C. $1$
D. $2$
Answer
160.8k+ views
Hint: To find the element of second row and third column in the inverse of the matrix of $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$, we will find the inverse of this matrix and select the element ${{a}_{23}}$. We will first calculate the determinant and the adjoint of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ . Then we will substitute the values in the formula of the inverse.
Formula Used: \[{{A}^{-1}}=\frac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)\,$ then
$\begin{align}
& |A|=a\left( \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right)-b\left( \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right)+c\left( \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right) \\
& =a(ei-fh)-b(di-fg)+c(dh-eg)
\end{align}$.
Complete step by step solution: We are given a matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ and we have to find the element of second row and third column in the inverse of this matrix.
We will find the inverse of this matrix. To do that first we will calculate the determinant and adjoint of the matrix.
Let us assume this matrix be $A=\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ so the determinant will be,
$|A|=1(1-0)-2(2-0)+1(0+1)$
$\begin{align}
& |A|=1-4+1 \\
& \,\,\,\,\,\,\,=-2 \\
\end{align}$
Now we will find adjoint of the matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix.
The cofactor of the matrix is,
$A=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{12}} & +{{A}_{13}} \\
-{{A}_{21}} & +{{A}_{22}} & -{{A}_{23}} \\
+{{A}_{31}} & -{{A}_{32}} & +{{A}_{33}} \\
\end{matrix} \right)$
The transpose of the cofactor of the matrix will be,
${{A}^{T}}=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)$
We will now find the inverse of the matrix,
\[{{A}^{-1}}=\frac{1}{-2}\,\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)\]
We have to find the element of the second row and third column so we will select that element from the cofactor,
\[{{({{A}^{-1}})}_{23}}=\frac{-{{A}_{32}}}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left( \begin{matrix}
1 & 1 \\
2 & 0 \\
\end{matrix} \right)}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left[ 0-2 \right]}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{2}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=-1\]
The value of the element of second row and third column in the inverse of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is \[{{({{A}^{-1}})}_{23}}=-1\]
Option ‘B’ is correct
Note:The transpose of the matrix is calculated by interchanging the element of the principal diagonal and only changing the sign of the other diagonal.
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$, we will find the inverse of this matrix and select the element ${{a}_{23}}$. We will first calculate the determinant and the adjoint of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ . Then we will substitute the values in the formula of the inverse.
Formula Used: \[{{A}^{-1}}=\frac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)\,$ then
$\begin{align}
& |A|=a\left( \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right)-b\left( \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right)+c\left( \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right) \\
& =a(ei-fh)-b(di-fg)+c(dh-eg)
\end{align}$.
Complete step by step solution: We are given a matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ and we have to find the element of second row and third column in the inverse of this matrix.
We will find the inverse of this matrix. To do that first we will calculate the determinant and adjoint of the matrix.
Let us assume this matrix be $A=\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ so the determinant will be,
$|A|=1(1-0)-2(2-0)+1(0+1)$
$\begin{align}
& |A|=1-4+1 \\
& \,\,\,\,\,\,\,=-2 \\
\end{align}$
Now we will find adjoint of the matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix.
The cofactor of the matrix is,
$A=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{12}} & +{{A}_{13}} \\
-{{A}_{21}} & +{{A}_{22}} & -{{A}_{23}} \\
+{{A}_{31}} & -{{A}_{32}} & +{{A}_{33}} \\
\end{matrix} \right)$
The transpose of the cofactor of the matrix will be,
${{A}^{T}}=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)$
We will now find the inverse of the matrix,
\[{{A}^{-1}}=\frac{1}{-2}\,\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)\]
We have to find the element of the second row and third column so we will select that element from the cofactor,
\[{{({{A}^{-1}})}_{23}}=\frac{-{{A}_{32}}}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left( \begin{matrix}
1 & 1 \\
2 & 0 \\
\end{matrix} \right)}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left[ 0-2 \right]}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{2}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=-1\]
The value of the element of second row and third column in the inverse of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is \[{{({{A}^{-1}})}_{23}}=-1\]
Option ‘B’ is correct
Note:The transpose of the matrix is calculated by interchanging the element of the principal diagonal and only changing the sign of the other diagonal.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
