
The element of second row and third column in the inverse of $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is
A. $-2$
B. $-1$
C. $1$
D. $2$
Answer
232.8k+ views
Hint: To find the element of second row and third column in the inverse of the matrix of $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$, we will find the inverse of this matrix and select the element ${{a}_{23}}$. We will first calculate the determinant and the adjoint of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ . Then we will substitute the values in the formula of the inverse.
Formula Used: \[{{A}^{-1}}=\frac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)\,$ then
$\begin{align}
& |A|=a\left( \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right)-b\left( \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right)+c\left( \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right) \\
& =a(ei-fh)-b(di-fg)+c(dh-eg)
\end{align}$.
Complete step by step solution: We are given a matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ and we have to find the element of second row and third column in the inverse of this matrix.
We will find the inverse of this matrix. To do that first we will calculate the determinant and adjoint of the matrix.
Let us assume this matrix be $A=\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ so the determinant will be,
$|A|=1(1-0)-2(2-0)+1(0+1)$
$\begin{align}
& |A|=1-4+1 \\
& \,\,\,\,\,\,\,=-2 \\
\end{align}$
Now we will find adjoint of the matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix.
The cofactor of the matrix is,
$A=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{12}} & +{{A}_{13}} \\
-{{A}_{21}} & +{{A}_{22}} & -{{A}_{23}} \\
+{{A}_{31}} & -{{A}_{32}} & +{{A}_{33}} \\
\end{matrix} \right)$
The transpose of the cofactor of the matrix will be,
${{A}^{T}}=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)$
We will now find the inverse of the matrix,
\[{{A}^{-1}}=\frac{1}{-2}\,\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)\]
We have to find the element of the second row and third column so we will select that element from the cofactor,
\[{{({{A}^{-1}})}_{23}}=\frac{-{{A}_{32}}}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left( \begin{matrix}
1 & 1 \\
2 & 0 \\
\end{matrix} \right)}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left[ 0-2 \right]}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{2}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=-1\]
The value of the element of second row and third column in the inverse of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is \[{{({{A}^{-1}})}_{23}}=-1\]
Option ‘B’ is correct
Note:The transpose of the matrix is calculated by interchanging the element of the principal diagonal and only changing the sign of the other diagonal.
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$, we will find the inverse of this matrix and select the element ${{a}_{23}}$. We will first calculate the determinant and the adjoint of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ . Then we will substitute the values in the formula of the inverse.
Formula Used: \[{{A}^{-1}}=\frac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)\,$ then
$\begin{align}
& |A|=a\left( \begin{matrix}
e & f \\
h & i \\
\end{matrix} \right)-b\left( \begin{matrix}
d & f \\
g & i \\
\end{matrix} \right)+c\left( \begin{matrix}
d & e \\
g & h \\
\end{matrix} \right) \\
& =a(ei-fh)-b(di-fg)+c(dh-eg)
\end{align}$.
Complete step by step solution: We are given a matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ and we have to find the element of second row and third column in the inverse of this matrix.
We will find the inverse of this matrix. To do that first we will calculate the determinant and adjoint of the matrix.
Let us assume this matrix be $A=\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ so the determinant will be,
$|A|=1(1-0)-2(2-0)+1(0+1)$
$\begin{align}
& |A|=1-4+1 \\
& \,\,\,\,\,\,\,=-2 \\
\end{align}$
Now we will find adjoint of the matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix.
The cofactor of the matrix is,
$A=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{12}} & +{{A}_{13}} \\
-{{A}_{21}} & +{{A}_{22}} & -{{A}_{23}} \\
+{{A}_{31}} & -{{A}_{32}} & +{{A}_{33}} \\
\end{matrix} \right)$
The transpose of the cofactor of the matrix will be,
${{A}^{T}}=\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)$
We will now find the inverse of the matrix,
\[{{A}^{-1}}=\frac{1}{-2}\,\left( \begin{matrix}
+{{A}_{11}} & -{{A}_{21}} & +{{A}_{31}} \\
-{{A}_{12}} & +{{A}_{22}} & -{{A}_{32}} \\
+{{A}_{13}} & -{{A}_{23}} & +{{A}_{33}} \\
\end{matrix} \right)\]
We have to find the element of the second row and third column so we will select that element from the cofactor,
\[{{({{A}^{-1}})}_{23}}=\frac{-{{A}_{32}}}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left( \begin{matrix}
1 & 1 \\
2 & 0 \\
\end{matrix} \right)}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{-\left[ 0-2 \right]}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=\frac{2}{-2}\,\]
\[{{({{A}^{-1}})}_{23}}=-1\]
The value of the element of second row and third column in the inverse of the matrix $\left( \begin{matrix}
1 & 2 & 1 \\
2 & 1 & 0 \\
-1 & 0 & 1 \\
\end{matrix} \right)$ is \[{{({{A}^{-1}})}_{23}}=-1\]
Option ‘B’ is correct
Note:The transpose of the matrix is calculated by interchanging the element of the principal diagonal and only changing the sign of the other diagonal.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

