
The electrostatic potential energy between proton and electron separated by a distance 1 ${A^0}$ is:
(A) 13.6 eV
(B) -13.6 eV
(C) 14.4 eV
(D) -14.4 eV
Answer
219k+ views
Hint We should know that electrostatic potential energy is defined as the potential energy which arises from the conservative Coulomb forces and is engaged with the configuration of a particular set of point charges which are present within a system.
Complete step by step answer
We know that the electrostatic potential energy between the proton and the electron distance is 1${A^0}$. We can write this as: $1 \times {10^{10}}m$
So, the value of potential energy which is denoted by U is given as:
$U = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{r}$$U = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{r}$
Now we have to put the values to get that:
$\dfrac{{9 \times {{10}^9} \times 1.6 \times {{10}^{ - 19}} \times 1.6 \times {{10}^{ - 19}}}}{{{{10}^{ - 10}}}} = 13.6eV$
We have obtained the value since we know that 1eV has the value of $1.6 \times {10^{ - 19}}J$
So, the correct option is option A.
Note To avoid any confusion we should know that the difference electric potential energy which is known as the electric potential energy at a particular point in an electric field is defined as the amount of work that is done to bring the unit positive charge from infinity to that particular point. On the other hand, potential energy is defined as the energy that is required to move a charge.
Complete step by step answer
We know that the electrostatic potential energy between the proton and the electron distance is 1${A^0}$. We can write this as: $1 \times {10^{10}}m$
So, the value of potential energy which is denoted by U is given as:
$U = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{r}$$U = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{r}$
Now we have to put the values to get that:
$\dfrac{{9 \times {{10}^9} \times 1.6 \times {{10}^{ - 19}} \times 1.6 \times {{10}^{ - 19}}}}{{{{10}^{ - 10}}}} = 13.6eV$
We have obtained the value since we know that 1eV has the value of $1.6 \times {10^{ - 19}}J$
So, the correct option is option A.
Note To avoid any confusion we should know that the difference electric potential energy which is known as the electric potential energy at a particular point in an electric field is defined as the amount of work that is done to bring the unit positive charge from infinity to that particular point. On the other hand, potential energy is defined as the energy that is required to move a charge.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

