
The electric field of an electromagnetic wave travelling through the vacuum is given by the equation $E = {E_0}\sin \left( {kx - \omega t} \right)$ . The quantity that is independent of wavelength is:
(A) $k\omega $
(B) $\dfrac{k}{\omega }$
(C) ${k^2}\omega $
(D) $\omega $
Answer
220.2k+ views
Hint: The angular frequency $\omega = 2\pi \nu $. The frequency varies with wavelength as $\nu = \dfrac{c}{\lambda }$. Now to find the quantity which is independent of wavelength, we will go with the other options available.
Step-by-step answer:
$k$ is a wave number.
$ \Rightarrow k = \dfrac{{2\pi }}{\lambda }$
It shows that k is dependent on wavelength.
Now,
$ \Rightarrow $ $\dfrac{k}{\omega } = \dfrac{{\dfrac{{2\pi }}{\lambda }}}{{2\pi \nu }}$ $ = \dfrac{1}{{\nu \lambda }} = \dfrac{1}{c}\left( {\because c = \nu \lambda } \right)$
where $c$ is the speed of electromagnetic waves in vacuum. Its value is $3 \times {10^8}{\raise0.5ex\hbox{$\scriptstyle m$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle s$}}$ .
Hence, option B. is correct.
NOTE: Try to use the options given as a tool to find your answer. It is necessary to observe that $\omega $ is dependent on wavelength. So, anything which includes $\omega $ as a product will also be dependent on wavelength. Only, the quantity that can be independent is the one with the division(option B. here). Hence, try to derive from it and get the answer.
Step-by-step answer:
$k$ is a wave number.
$ \Rightarrow k = \dfrac{{2\pi }}{\lambda }$
It shows that k is dependent on wavelength.
Now,
$ \Rightarrow $ $\dfrac{k}{\omega } = \dfrac{{\dfrac{{2\pi }}{\lambda }}}{{2\pi \nu }}$ $ = \dfrac{1}{{\nu \lambda }} = \dfrac{1}{c}\left( {\because c = \nu \lambda } \right)$
where $c$ is the speed of electromagnetic waves in vacuum. Its value is $3 \times {10^8}{\raise0.5ex\hbox{$\scriptstyle m$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle s$}}$ .
Hence, option B. is correct.
NOTE: Try to use the options given as a tool to find your answer. It is necessary to observe that $\omega $ is dependent on wavelength. So, anything which includes $\omega $ as a product will also be dependent on wavelength. Only, the quantity that can be independent is the one with the division(option B. here). Hence, try to derive from it and get the answer.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

