
The electric field of an electromagnetic wave travelling through the vacuum is given by the equation $E = {E_0}\sin \left( {kx - \omega t} \right)$ . The quantity that is independent of wavelength is:
(A) $k\omega $
(B) $\dfrac{k}{\omega }$
(C) ${k^2}\omega $
(D) $\omega $
Answer
232.8k+ views
Hint: The angular frequency $\omega = 2\pi \nu $. The frequency varies with wavelength as $\nu = \dfrac{c}{\lambda }$. Now to find the quantity which is independent of wavelength, we will go with the other options available.
Step-by-step answer:
$k$ is a wave number.
$ \Rightarrow k = \dfrac{{2\pi }}{\lambda }$
It shows that k is dependent on wavelength.
Now,
$ \Rightarrow $ $\dfrac{k}{\omega } = \dfrac{{\dfrac{{2\pi }}{\lambda }}}{{2\pi \nu }}$ $ = \dfrac{1}{{\nu \lambda }} = \dfrac{1}{c}\left( {\because c = \nu \lambda } \right)$
where $c$ is the speed of electromagnetic waves in vacuum. Its value is $3 \times {10^8}{\raise0.5ex\hbox{$\scriptstyle m$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle s$}}$ .
Hence, option B. is correct.
NOTE: Try to use the options given as a tool to find your answer. It is necessary to observe that $\omega $ is dependent on wavelength. So, anything which includes $\omega $ as a product will also be dependent on wavelength. Only, the quantity that can be independent is the one with the division(option B. here). Hence, try to derive from it and get the answer.
Step-by-step answer:
$k$ is a wave number.
$ \Rightarrow k = \dfrac{{2\pi }}{\lambda }$
It shows that k is dependent on wavelength.
Now,
$ \Rightarrow $ $\dfrac{k}{\omega } = \dfrac{{\dfrac{{2\pi }}{\lambda }}}{{2\pi \nu }}$ $ = \dfrac{1}{{\nu \lambda }} = \dfrac{1}{c}\left( {\because c = \nu \lambda } \right)$
where $c$ is the speed of electromagnetic waves in vacuum. Its value is $3 \times {10^8}{\raise0.5ex\hbox{$\scriptstyle m$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle s$}}$ .
Hence, option B. is correct.
NOTE: Try to use the options given as a tool to find your answer. It is necessary to observe that $\omega $ is dependent on wavelength. So, anything which includes $\omega $ as a product will also be dependent on wavelength. Only, the quantity that can be independent is the one with the division(option B. here). Hence, try to derive from it and get the answer.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

