
The electric dipole is placed along the x-axis at the origin OF. A point P is at a distance of $20{\text{ cm}}$ from this origin such that OP makes an angle \[60^\circ \] with the x - axis. If the electric field at P makes an angle $\theta $ with the x - axis, the value of $\theta $ would be
A. \[\dfrac{\pi }{3}\]
B. ${\tan ^{ - 1}}\dfrac{{\sqrt 3 }}{2}$
C. $\dfrac{{2\pi }}{3}$
D. $\dfrac{\pi }{3} + {\tan ^{ - 1}}\dfrac{{\sqrt 3 }}{2}$
Answer
145.5k+ views
Hint: Resolve the electrical dipole and electric field in two components. Then find the electric field due to the dipole at the axial and equatorial point.
The electric field due to a dipole at an axial point is given by ${E_{axial}} = \dfrac{{2kp}}{{{r^3}}}$ in the direction of the dipole.
The electric field due to a dipole at an equatorial point is given by ${E_{eq}} = \dfrac{{kp}}{{{r^3}}}$ in the direction opposite to that of the dipole.
Here, $p$ is the dipole moment, $r$ is the distance of the point from the dipole and $k = \dfrac{1}{{4\pi {\varepsilon _0}}}$
.
Complete step by step answer
Let us first discuss an electric dipole. It is basically an electrostatic system of two equal and opposite point charges separated by a very small distance.
As given in the question that the electric dipole is placed along the x-axis at the origin O and a point P is at a distance of $20{\text{ cm}}$ from this origin such that OP makes an angle \[60^\circ \] with the x - axis. Now, if the electric field at P makes an angle $\theta $ with the x - axis, we have to calculate the value of $\theta $ .
A diagram is given which shows the case.
Let $E$ be the magnitude of the electric field, $\alpha $ be the angle between the electric field and line OP and $r = 20cm$ be the distance OP.
Now, the electric dipole and the electric field vector are resolved into the two components.
We know that the electric field due to a dipole at an axial point is given by ${E_{axial}} = \dfrac{{2kp}}{{{r^3}}}$ in the direction of the dipole.
For the axial point, the dipole moment has value $p\cos 60^\circ $ and the electric field component is $E\cos \alpha $ .
Therefore, according to the above expression we have

$E\cos \alpha = \dfrac{{2kp\cos 60^\circ }}{{{r^3}}}$ …..(i)
We also know that the electric field due to a dipole at an equatorial point is given by ${E_{eq}} = \dfrac{{kp}}{{{r^3}}}$ in the direction opposite to that of the dipole.
For the equatorial point, the dipole moment has value $p\sin 60^\circ $ and the electric field component is $E\sin \alpha $ .
Therefore, according to the above expression we have
$E\sin \alpha = \dfrac{{kp\sin 60^\circ }}{{{r^3}}}$ …..(ii)
Now, dividing equation (ii) by (i) we have
\[\tan \alpha = \dfrac{{\tan 60^\circ }}{2} = \dfrac{{\sqrt 3 }}{2}\]
On simplifying we have
$\alpha = {\tan ^{ - 1}}\dfrac{{\sqrt 3 }}{2}$
Now, from the figure we have
$\theta = \alpha + 60^\circ = \alpha + \dfrac{\pi }{3}$
On substituting the value of $\alpha $ we have the final answer as
$\theta = \dfrac{\pi }{3} + {\tan ^{ - 1}}\dfrac{{\sqrt 3 }}{2}$
Hence, option D is correct.
Note: The formula used for the electric field due to a dipole in this question is only valid when the distance between the charges of the dipole is very small as compared to the distance between the centre of the dipole and the point where the electric field is to be calculated.
The electric field due to a dipole at an axial point is given by ${E_{axial}} = \dfrac{{2kp}}{{{r^3}}}$ in the direction of the dipole.
The electric field due to a dipole at an equatorial point is given by ${E_{eq}} = \dfrac{{kp}}{{{r^3}}}$ in the direction opposite to that of the dipole.
Here, $p$ is the dipole moment, $r$ is the distance of the point from the dipole and $k = \dfrac{1}{{4\pi {\varepsilon _0}}}$
.
Complete step by step answer
Let us first discuss an electric dipole. It is basically an electrostatic system of two equal and opposite point charges separated by a very small distance.
As given in the question that the electric dipole is placed along the x-axis at the origin O and a point P is at a distance of $20{\text{ cm}}$ from this origin such that OP makes an angle \[60^\circ \] with the x - axis. Now, if the electric field at P makes an angle $\theta $ with the x - axis, we have to calculate the value of $\theta $ .
A diagram is given which shows the case.
Let $E$ be the magnitude of the electric field, $\alpha $ be the angle between the electric field and line OP and $r = 20cm$ be the distance OP.
Now, the electric dipole and the electric field vector are resolved into the two components.
We know that the electric field due to a dipole at an axial point is given by ${E_{axial}} = \dfrac{{2kp}}{{{r^3}}}$ in the direction of the dipole.
For the axial point, the dipole moment has value $p\cos 60^\circ $ and the electric field component is $E\cos \alpha $ .
Therefore, according to the above expression we have

$E\cos \alpha = \dfrac{{2kp\cos 60^\circ }}{{{r^3}}}$ …..(i)
We also know that the electric field due to a dipole at an equatorial point is given by ${E_{eq}} = \dfrac{{kp}}{{{r^3}}}$ in the direction opposite to that of the dipole.
For the equatorial point, the dipole moment has value $p\sin 60^\circ $ and the electric field component is $E\sin \alpha $ .
Therefore, according to the above expression we have
$E\sin \alpha = \dfrac{{kp\sin 60^\circ }}{{{r^3}}}$ …..(ii)
Now, dividing equation (ii) by (i) we have
\[\tan \alpha = \dfrac{{\tan 60^\circ }}{2} = \dfrac{{\sqrt 3 }}{2}\]
On simplifying we have
$\alpha = {\tan ^{ - 1}}\dfrac{{\sqrt 3 }}{2}$
Now, from the figure we have
$\theta = \alpha + 60^\circ = \alpha + \dfrac{\pi }{3}$
On substituting the value of $\alpha $ we have the final answer as
$\theta = \dfrac{\pi }{3} + {\tan ^{ - 1}}\dfrac{{\sqrt 3 }}{2}$
Hence, option D is correct.
Note: The formula used for the electric field due to a dipole in this question is only valid when the distance between the charges of the dipole is very small as compared to the distance between the centre of the dipole and the point where the electric field is to be calculated.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
