
The efficiency of a Carnot engine world between two temperatures is $0.2$ , when the temperature of the source is increased by ${25^\circ }C$ , the efficiency increases to $0.25$. The temperatures of the source and the sink will be
(A) $375K$ , $300K$
(B) $475K$ , $400K$
(C) $400K$ , $800K$
(D) $375K$ , $400K$
Answer
232.8k+ views
Hint: - The efficiency of Carnot’s heat engine depends on the temperature of the heat source and that of the heat sink. The greater the temperature between the source and the sink, the higher will be the efficiency. If the temperature of the source is increased by ${25^ \circ }C$ , then the efficiency will also increase.
Formula used:
The efficiency of Carnot’s heat engine is : $\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Complete step-by-step solution:
A heat engine is a system or a device operating in a cyclic process and converting heat into work, without itself undergoing any change at the end of the cycle. It is founded on the principle that a system whose different parts are at different temperatures tends to change towards a thermodynamic equilibrium state.
The Carnot heat engine is an ideal heat engine. The efficiency of Carnot’s heat engine is
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$ .......... $\left( 1 \right)$
where ${T_1}$ is the temperature of the source and ${T_2}$ is the temperature of the sink.
It is given that the efficiency between the two temperatures is $0.2$ . Therefore, by equation $\left( 1 \right)$
$0.2 = 1 - \dfrac{{{T_2}}}{{{T_1}}} \to {T_2} = 0.8{T_1}$ ............ $\left( 2 \right)$
Also, when the temperature of the source ${T_1}$ is increased by ${25^ \circ }C$, the efficiency increases to $0.25$. Thus, the increase in efficiency can be written as
$0.25 = 1 - \dfrac{{{T_2}}}{{{T_1} + 25}}$
$ \Rightarrow \dfrac{{{T_2}}}{{{T_1} + 25}} = 1 - 0.25 = 0.75$
Substituting the value of ${T_2}$ from equation $\left( 2 \right)$
$\dfrac{{0.8{T_1}}}{{{T_1} + 25}} = 0.75$
$ \Rightarrow 0.8{T_1} = 0.75\left( {{T_1} + 25} \right)$
Solving the equation for ${T_1}$ we get,
$0.8{T_1} = 0.75{T_1} + \left( {0.75 \times 25} \right)$
$ \Rightarrow 0.05{T_1} = 18.75$
On further solving the equation we get,
${T_1} = \dfrac{{18.75}}{{0.05}}$
$ \Rightarrow {T_1} = 375K$
The value of ${T_2}$ can be derived by equation $\left( 2 \right)$
${T_2} = 0.8{T_1} = 0.8 \times 375 = 300K$
Therefore, the temperature of the source and sink will be $375K$ and $300K$ .
Hence, option (A) is the correct answer.
Note: The requirements for the Carnot heat engine are difficult rather impossible to be satisfied in actual practice. Therefore the Carnot heat engine can be designed only in thought. That’s why it is said to be an ideal heat engine.
Formula used:
The efficiency of Carnot’s heat engine is : $\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Complete step-by-step solution:
A heat engine is a system or a device operating in a cyclic process and converting heat into work, without itself undergoing any change at the end of the cycle. It is founded on the principle that a system whose different parts are at different temperatures tends to change towards a thermodynamic equilibrium state.
The Carnot heat engine is an ideal heat engine. The efficiency of Carnot’s heat engine is
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$ .......... $\left( 1 \right)$
where ${T_1}$ is the temperature of the source and ${T_2}$ is the temperature of the sink.
It is given that the efficiency between the two temperatures is $0.2$ . Therefore, by equation $\left( 1 \right)$
$0.2 = 1 - \dfrac{{{T_2}}}{{{T_1}}} \to {T_2} = 0.8{T_1}$ ............ $\left( 2 \right)$
Also, when the temperature of the source ${T_1}$ is increased by ${25^ \circ }C$, the efficiency increases to $0.25$. Thus, the increase in efficiency can be written as
$0.25 = 1 - \dfrac{{{T_2}}}{{{T_1} + 25}}$
$ \Rightarrow \dfrac{{{T_2}}}{{{T_1} + 25}} = 1 - 0.25 = 0.75$
Substituting the value of ${T_2}$ from equation $\left( 2 \right)$
$\dfrac{{0.8{T_1}}}{{{T_1} + 25}} = 0.75$
$ \Rightarrow 0.8{T_1} = 0.75\left( {{T_1} + 25} \right)$
Solving the equation for ${T_1}$ we get,
$0.8{T_1} = 0.75{T_1} + \left( {0.75 \times 25} \right)$
$ \Rightarrow 0.05{T_1} = 18.75$
On further solving the equation we get,
${T_1} = \dfrac{{18.75}}{{0.05}}$
$ \Rightarrow {T_1} = 375K$
The value of ${T_2}$ can be derived by equation $\left( 2 \right)$
${T_2} = 0.8{T_1} = 0.8 \times 375 = 300K$
Therefore, the temperature of the source and sink will be $375K$ and $300K$ .
Hence, option (A) is the correct answer.
Note: The requirements for the Carnot heat engine are difficult rather impossible to be satisfied in actual practice. Therefore the Carnot heat engine can be designed only in thought. That’s why it is said to be an ideal heat engine.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

