
The efficiency of a Carnot engine world between two temperatures is $0.2$ , when the temperature of the source is increased by ${25^\circ }C$ , the efficiency increases to $0.25$. The temperatures of the source and the sink will be
(A) $375K$ , $300K$
(B) $475K$ , $400K$
(C) $400K$ , $800K$
(D) $375K$ , $400K$
Answer
217.2k+ views
Hint: - The efficiency of Carnot’s heat engine depends on the temperature of the heat source and that of the heat sink. The greater the temperature between the source and the sink, the higher will be the efficiency. If the temperature of the source is increased by ${25^ \circ }C$ , then the efficiency will also increase.
Formula used:
The efficiency of Carnot’s heat engine is : $\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Complete step-by-step solution:
A heat engine is a system or a device operating in a cyclic process and converting heat into work, without itself undergoing any change at the end of the cycle. It is founded on the principle that a system whose different parts are at different temperatures tends to change towards a thermodynamic equilibrium state.
The Carnot heat engine is an ideal heat engine. The efficiency of Carnot’s heat engine is
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$ .......... $\left( 1 \right)$
where ${T_1}$ is the temperature of the source and ${T_2}$ is the temperature of the sink.
It is given that the efficiency between the two temperatures is $0.2$ . Therefore, by equation $\left( 1 \right)$
$0.2 = 1 - \dfrac{{{T_2}}}{{{T_1}}} \to {T_2} = 0.8{T_1}$ ............ $\left( 2 \right)$
Also, when the temperature of the source ${T_1}$ is increased by ${25^ \circ }C$, the efficiency increases to $0.25$. Thus, the increase in efficiency can be written as
$0.25 = 1 - \dfrac{{{T_2}}}{{{T_1} + 25}}$
$ \Rightarrow \dfrac{{{T_2}}}{{{T_1} + 25}} = 1 - 0.25 = 0.75$
Substituting the value of ${T_2}$ from equation $\left( 2 \right)$
$\dfrac{{0.8{T_1}}}{{{T_1} + 25}} = 0.75$
$ \Rightarrow 0.8{T_1} = 0.75\left( {{T_1} + 25} \right)$
Solving the equation for ${T_1}$ we get,
$0.8{T_1} = 0.75{T_1} + \left( {0.75 \times 25} \right)$
$ \Rightarrow 0.05{T_1} = 18.75$
On further solving the equation we get,
${T_1} = \dfrac{{18.75}}{{0.05}}$
$ \Rightarrow {T_1} = 375K$
The value of ${T_2}$ can be derived by equation $\left( 2 \right)$
${T_2} = 0.8{T_1} = 0.8 \times 375 = 300K$
Therefore, the temperature of the source and sink will be $375K$ and $300K$ .
Hence, option (A) is the correct answer.
Note: The requirements for the Carnot heat engine are difficult rather impossible to be satisfied in actual practice. Therefore the Carnot heat engine can be designed only in thought. That’s why it is said to be an ideal heat engine.
Formula used:
The efficiency of Carnot’s heat engine is : $\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Complete step-by-step solution:
A heat engine is a system or a device operating in a cyclic process and converting heat into work, without itself undergoing any change at the end of the cycle. It is founded on the principle that a system whose different parts are at different temperatures tends to change towards a thermodynamic equilibrium state.
The Carnot heat engine is an ideal heat engine. The efficiency of Carnot’s heat engine is
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$ .......... $\left( 1 \right)$
where ${T_1}$ is the temperature of the source and ${T_2}$ is the temperature of the sink.
It is given that the efficiency between the two temperatures is $0.2$ . Therefore, by equation $\left( 1 \right)$
$0.2 = 1 - \dfrac{{{T_2}}}{{{T_1}}} \to {T_2} = 0.8{T_1}$ ............ $\left( 2 \right)$
Also, when the temperature of the source ${T_1}$ is increased by ${25^ \circ }C$, the efficiency increases to $0.25$. Thus, the increase in efficiency can be written as
$0.25 = 1 - \dfrac{{{T_2}}}{{{T_1} + 25}}$
$ \Rightarrow \dfrac{{{T_2}}}{{{T_1} + 25}} = 1 - 0.25 = 0.75$
Substituting the value of ${T_2}$ from equation $\left( 2 \right)$
$\dfrac{{0.8{T_1}}}{{{T_1} + 25}} = 0.75$
$ \Rightarrow 0.8{T_1} = 0.75\left( {{T_1} + 25} \right)$
Solving the equation for ${T_1}$ we get,
$0.8{T_1} = 0.75{T_1} + \left( {0.75 \times 25} \right)$
$ \Rightarrow 0.05{T_1} = 18.75$
On further solving the equation we get,
${T_1} = \dfrac{{18.75}}{{0.05}}$
$ \Rightarrow {T_1} = 375K$
The value of ${T_2}$ can be derived by equation $\left( 2 \right)$
${T_2} = 0.8{T_1} = 0.8 \times 375 = 300K$
Therefore, the temperature of the source and sink will be $375K$ and $300K$ .
Hence, option (A) is the correct answer.
Note: The requirements for the Carnot heat engine are difficult rather impossible to be satisfied in actual practice. Therefore the Carnot heat engine can be designed only in thought. That’s why it is said to be an ideal heat engine.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

