![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The effective resistance between P and Q for the following network is:
![](https://www.vedantu.com/question-sets/30e9a2d7-aa56-40b8-8c4c-186cf12195f37192775392723404513.png)
A) $\dfrac{1}{{12}} \Omega$
B) $21\Omega $
C) $12\Omega $
D) $\dfrac{1}{{21}}\Omega $
Answer
117.3k+ views
Hint: In the given circuit we can see that many resistances are connected. In circuits resistances can be connected in series and parallel combinations. The net resistance between points P and Q can be found by solving these combinations. So we are going to use the following formulae of series and parallel combinations of resistances.
Series combination:
\[R = {R_1} + {R_2}\]
Parallel combination:
$\dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$
Complete step by step solution:
Let $4\Omega $resistance is ${R_1}$, $3\Omega $ resistance is ${R_2}$, other $3\Omega $ resistance is ${R_3}$, $5\Omega$ resistance is ${R_4}$ and $6\Omega$ resistance is ${R_5}$.
Between points A and B resistances \[{R_2}\] and \[{R_3}\] are in series.
Let their resultant is \[{R'}\].
So \[{R'} = {R_2} + {R_3}\]
Putting the values of \[{R_2}{\text{ and }}{R_3}\]
\[\Rightarrow {R'} = 3 + 3\]
\[\Rightarrow {R'} = 6{\text{ }}\Omega \]
\[\Rightarrow {R'}\] and \[{R_5}\] are in parallel. Let their resultant is \[{R^{''}}\].
$\Rightarrow \dfrac{1}{{{R^{''}}}} = \dfrac{1}{{{R'}}} + \dfrac{1}{{{R_5}}}$
Putting the values of \[{R'}\] and \[{R_5}\]
$\Rightarrow \dfrac{1}{{{R^{''}}}} = \dfrac{1}{6} + \dfrac{1}{6}$
$\Rightarrow \dfrac{1}{{{R^{''}}}} = \dfrac{2}{6}$
$\Rightarrow \dfrac{1}{{{R^{''}}}} = \dfrac{1}{3}$
$\Rightarrow {R^{''}} = 3{\text{ }}\Omega $
Now,\[{R^{''}}\], \[{R_1}\]and \[{R_4}\]are in series. Let their resultant is R.
So, \[R = {R^{''}} + {R_1} + {R_4}\]
Putting the values of \[{R^{''}},{R_1}{\text{ and }}{R_4}\]
$\Rightarrow R = 4 + 3 + 5$
$\Rightarrow R = 12\Omega $
The resultant resistance between points P and Q is $R = 12 \Omega $.
Note: In the questions where circuits are presented we have to be careful while finding the series and parallel combinations of resistances. The circuit given in the question has resistances only so it is sort of basic and easy. But circuits can be very complicated when capacitors and inductors are also involved in the circuit. In such conditions we have to find the total resistance considering the impedance created by the capacitors and inductors also. The impedance in case of capacitor is given by following formula,
${X_c} = \dfrac{1}{{\omega C}}$
Where, $\omega $ is the angular frequency ${s^{ - 1}}$ and
C is the capacitance in coulomb
The impedance in case of inductor is given by following formula,
${X_c} = \omega L$
Where, $\omega $ is the angular frequency ${s^{ - 1}}$ and
L is the inductance in Henry
So circuits consisting of capacitors, inductors we will use above formulae to find net impedance.
Series combination:
\[R = {R_1} + {R_2}\]
Parallel combination:
$\dfrac{1}{R} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$
Complete step by step solution:
Let $4\Omega $resistance is ${R_1}$, $3\Omega $ resistance is ${R_2}$, other $3\Omega $ resistance is ${R_3}$, $5\Omega$ resistance is ${R_4}$ and $6\Omega$ resistance is ${R_5}$.
Between points A and B resistances \[{R_2}\] and \[{R_3}\] are in series.
Let their resultant is \[{R'}\].
So \[{R'} = {R_2} + {R_3}\]
Putting the values of \[{R_2}{\text{ and }}{R_3}\]
\[\Rightarrow {R'} = 3 + 3\]
\[\Rightarrow {R'} = 6{\text{ }}\Omega \]
\[\Rightarrow {R'}\] and \[{R_5}\] are in parallel. Let their resultant is \[{R^{''}}\].
$\Rightarrow \dfrac{1}{{{R^{''}}}} = \dfrac{1}{{{R'}}} + \dfrac{1}{{{R_5}}}$
Putting the values of \[{R'}\] and \[{R_5}\]
$\Rightarrow \dfrac{1}{{{R^{''}}}} = \dfrac{1}{6} + \dfrac{1}{6}$
$\Rightarrow \dfrac{1}{{{R^{''}}}} = \dfrac{2}{6}$
$\Rightarrow \dfrac{1}{{{R^{''}}}} = \dfrac{1}{3}$
$\Rightarrow {R^{''}} = 3{\text{ }}\Omega $
Now,\[{R^{''}}\], \[{R_1}\]and \[{R_4}\]are in series. Let their resultant is R.
So, \[R = {R^{''}} + {R_1} + {R_4}\]
Putting the values of \[{R^{''}},{R_1}{\text{ and }}{R_4}\]
$\Rightarrow R = 4 + 3 + 5$
$\Rightarrow R = 12\Omega $
The resultant resistance between points P and Q is $R = 12 \Omega $.
Note: In the questions where circuits are presented we have to be careful while finding the series and parallel combinations of resistances. The circuit given in the question has resistances only so it is sort of basic and easy. But circuits can be very complicated when capacitors and inductors are also involved in the circuit. In such conditions we have to find the total resistance considering the impedance created by the capacitors and inductors also. The impedance in case of capacitor is given by following formula,
${X_c} = \dfrac{1}{{\omega C}}$
Where, $\omega $ is the angular frequency ${s^{ - 1}}$ and
C is the capacitance in coulomb
The impedance in case of inductor is given by following formula,
${X_c} = \omega L$
Where, $\omega $ is the angular frequency ${s^{ - 1}}$ and
L is the inductance in Henry
So circuits consisting of capacitors, inductors we will use above formulae to find net impedance.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How to find Oxidation Number - Important Concepts for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How Electromagnetic Waves are Formed - Important Concepts for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electrical Resistance - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Average Atomic Mass - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Chemical Equation - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Chemistry Question Paper with Answer Keys and Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)