
The earth's magnetic field at the equator is approximately 0.4G. Estimate the earth's dipole moment.
A) $1.05 \times {10^{23}}A{m^2}$
B) $1.05 \times {10^{ - 23}}A{m^2}$
C) $5.01 \times {10^{23}}A{m^2}$
D) $5.01 \times {10^{ - 23}}A{m^2}$
Answer
135.9k+ views
Hint: To solve this question, we have to imagine that a bar magnet is kept at the equator of the earth. After that, we just have to find the relation between the dipole moment of that bar magnet and the magnetic field of that bar magnet. We can easily substitute the values to find the dipole moment of that magnet which will be the required dipole moment of the earth.
Formulae used:
${B_{equatorial}} = \dfrac{{{\mu _0}}}{{4\pi }} \times \dfrac{M}{{{d^3}}}$
Here ${\mu _0}$ is the permeability of free space, $M$ is the dipole moment of the magnet, $d$ is the distance of the point from the equator of the magnet, and ${B_{equatorial}}$ is the magnetic field of the magnetic field at the equator of the magnet.
Complete step by step solution:
Let us consider that a bar magnet is placed along the equator of the earth.

We know that,
$ \Rightarrow {B_{equatorial}} = \dfrac{{{\mu _0}}}{{4\pi }} \times \dfrac{M}{{{d^3}}}$
Here ${\mu _0}$ is the permeability of free space, $M$ is the dipole moment of the magnet, $d$ is the distance of the point from the equator of the magnet, and ${B_{equatorial}}$ is the magnetic field of the magnetic field at the equator of the magnet.
Let this be equation 1.
From the above diagram, we can say that
$ \Rightarrow d = R = 6400Km = 6400 \times {10^3}m$
Also, the value of the magnetic field is given as
$ \Rightarrow B = 0.4G = 0.4 \times {10^{ - 4}}T$
So equation 1 becomes,
$ \Rightarrow 0.4 \times {10^{ - 4}} = \dfrac{{{\mu _0}}}{{4\pi }} \times \dfrac{M}{{{{\left( {6400 \times {{10}^3}} \right)}^3}}}$
$ \Rightarrow M = \dfrac{{0.4 \times {{10}^{ - 4}} \times {{\left( {6400 \times {{10}^3}} \right)}^3}}}{{{{10}^{ - 7}}}} = 1.05 \times {10^{23}}A{m^2}$
$ \Rightarrow M = 1.05 \times {10^{23}}A{m^2}$
Earth’s dipole moment at the equator will be $1.05 \times {10^{23}}A{m^2}$.
From this, we can conclude that option (A) is the correct answer.
Note: The values of magnetic fields at the equator and the axis of the bar magnet are different. So we have to be very careful while solving questions related to the magnetic field or dipole moment of any magnet to avoid incorrect answers.
Formulae used:
${B_{equatorial}} = \dfrac{{{\mu _0}}}{{4\pi }} \times \dfrac{M}{{{d^3}}}$
Here ${\mu _0}$ is the permeability of free space, $M$ is the dipole moment of the magnet, $d$ is the distance of the point from the equator of the magnet, and ${B_{equatorial}}$ is the magnetic field of the magnetic field at the equator of the magnet.
Complete step by step solution:
Let us consider that a bar magnet is placed along the equator of the earth.

We know that,
$ \Rightarrow {B_{equatorial}} = \dfrac{{{\mu _0}}}{{4\pi }} \times \dfrac{M}{{{d^3}}}$
Here ${\mu _0}$ is the permeability of free space, $M$ is the dipole moment of the magnet, $d$ is the distance of the point from the equator of the magnet, and ${B_{equatorial}}$ is the magnetic field of the magnetic field at the equator of the magnet.
Let this be equation 1.
From the above diagram, we can say that
$ \Rightarrow d = R = 6400Km = 6400 \times {10^3}m$
Also, the value of the magnetic field is given as
$ \Rightarrow B = 0.4G = 0.4 \times {10^{ - 4}}T$
So equation 1 becomes,
$ \Rightarrow 0.4 \times {10^{ - 4}} = \dfrac{{{\mu _0}}}{{4\pi }} \times \dfrac{M}{{{{\left( {6400 \times {{10}^3}} \right)}^3}}}$
$ \Rightarrow M = \dfrac{{0.4 \times {{10}^{ - 4}} \times {{\left( {6400 \times {{10}^3}} \right)}^3}}}{{{{10}^{ - 7}}}} = 1.05 \times {10^{23}}A{m^2}$
$ \Rightarrow M = 1.05 \times {10^{23}}A{m^2}$
Earth’s dipole moment at the equator will be $1.05 \times {10^{23}}A{m^2}$.
From this, we can conclude that option (A) is the correct answer.
Note: The values of magnetic fields at the equator and the axis of the bar magnet are different. So we have to be very careful while solving questions related to the magnetic field or dipole moment of any magnet to avoid incorrect answers.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Collision - Important Concepts and Tips for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Displacement-Time Graph and Velocity-Time Graph for JEE
