
The displacement y in centimeters is given in terms of time t in second by the equation: \[y = 3\sin (3.14t) + 4\cos (3.14t)\] then the amplitude of SIMPLE HARMONIC MOTION is:
(A) 3cm
(B) 4cm
(C) 5cm
(D) 7cm
Answer
136.5k+ views
Hint: We know that the maximum value of \[a\sin x + b\cos x\] is \[\sqrt {{a^2} + {b^2}} \] . We will implicate the following formulae. The general equation of a Simple Harmonic Wave is in sin so the above will hold true.
Complete step-by-step solution
It is given to us that the equation of the SIMPLE HARMONIC MOTION is
\[y = 3\sin (3.14t) + 4\cos (3.14t)\] .
Here \[a = 3\] and \[b = 4\]
Using \[\sqrt {{a^2} + {b^2}} \]
\[ \Rightarrow Amplitude = \sqrt {{3^2} + {4^2}} = \sqrt {25} = 5\]
The maximum value of the given function is 5 and the maximum displacement in SIMPLE HARMONIC MOTION is the Amplitude of that SIMPLE HARMONIC MOTION.
Therefore, the answer is option C, 5cm.
Note The theta given inside the cos and the sin functions is equal therefore we are able to apply \[\sqrt {{a^2} + {b^2}} \] . If this were not the case then convert sin function to cos function or vice-versa and then add the corresponding functions to obtain the required value of amplitude.
Additional Information Simple Harmonic Motions is a type of periodic motion in which the acceleration of the body is directly proportional to its displacement from the mean position.
With the frequency of oscillations being the constant.
\[a = {\omega ^2}x\]
And its general equation is given by \[x = A\sin (\omega t + \phi )\]
Complete step-by-step solution
It is given to us that the equation of the SIMPLE HARMONIC MOTION is
\[y = 3\sin (3.14t) + 4\cos (3.14t)\] .
Here \[a = 3\] and \[b = 4\]
Using \[\sqrt {{a^2} + {b^2}} \]
\[ \Rightarrow Amplitude = \sqrt {{3^2} + {4^2}} = \sqrt {25} = 5\]
The maximum value of the given function is 5 and the maximum displacement in SIMPLE HARMONIC MOTION is the Amplitude of that SIMPLE HARMONIC MOTION.
Therefore, the answer is option C, 5cm.
Note The theta given inside the cos and the sin functions is equal therefore we are able to apply \[\sqrt {{a^2} + {b^2}} \] . If this were not the case then convert sin function to cos function or vice-versa and then add the corresponding functions to obtain the required value of amplitude.
Additional Information Simple Harmonic Motions is a type of periodic motion in which the acceleration of the body is directly proportional to its displacement from the mean position.
With the frequency of oscillations being the constant.
\[a = {\omega ^2}x\]
And its general equation is given by \[x = A\sin (\omega t + \phi )\]
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

A body is falling from a height h After it has fallen class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
