Answer
Verified
87.3k+ views
Hint When a body is deformed by an external force, the internal restoring forces will oppose this force and restore the original shape of the object. This restoring force developed per unit area is called stress. The ratio of change in dimension to the original dimension is called strain.
Complete Step by step solution
According to Hooke’s law within the elastic limit, stress is proportional to strain
Stress $ \propto $strain
$ \Rightarrow \dfrac{{stress}}{{strain}} = const$
This constant is called the modulus of elasticity.
Stress can be defined as the force per unit area, i.e.
Stress = $\dfrac{F}{a}$
We know that force, $F = ma$
The dimensional formula for force is $F = m \times a = \left[ {ML{T^{ - 2}}} \right]$
The area is given by length $ \times $breadth
The dimensional formula for the area can be written as, $a = l \times b = \left[ {{M^0}{L^2}{T^0}} \right]$
The dimensional formula for stress can be written as,
Stress $ = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{M^0}{L^2}{T^0}} \right]}}$
The dimensional formula for linear stress can be written as,
Stress $ = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right]$
The strain is a dimensionless quantity.
Therefore, the dimensional formula for modulus of elasticity can be written as,
Modulus of elasticity $ = \dfrac{{\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]}}{{\left[ {{M^0}{L^0}{T^0}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right]$
The answer is: Option (A): $\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]$
Additional information
An equation connecting the physical quantity with its dimensional formula is called the dimensional equation of that physical quantity. The dimensions of the same fundamental quantity must be the same on either side of a dimensional equation.
Note
All physical quantities can be expressed as a combination of seven fundamental or base quantities. The dimensional formula of a given physical quantity is an expression showing the dimensions of the fundamental quantities. Dimensions of a physical quantity are the powers to which the base quantities are to be raised to represent that quantity.
Complete Step by step solution
According to Hooke’s law within the elastic limit, stress is proportional to strain
Stress $ \propto $strain
$ \Rightarrow \dfrac{{stress}}{{strain}} = const$
This constant is called the modulus of elasticity.
Stress can be defined as the force per unit area, i.e.
Stress = $\dfrac{F}{a}$
We know that force, $F = ma$
The dimensional formula for force is $F = m \times a = \left[ {ML{T^{ - 2}}} \right]$
The area is given by length $ \times $breadth
The dimensional formula for the area can be written as, $a = l \times b = \left[ {{M^0}{L^2}{T^0}} \right]$
The dimensional formula for stress can be written as,
Stress $ = \dfrac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{M^0}{L^2}{T^0}} \right]}}$
The dimensional formula for linear stress can be written as,
Stress $ = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right]$
The strain is a dimensionless quantity.
Therefore, the dimensional formula for modulus of elasticity can be written as,
Modulus of elasticity $ = \dfrac{{\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]}}{{\left[ {{M^0}{L^0}{T^0}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right]$
The answer is: Option (A): $\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]$
Additional information
An equation connecting the physical quantity with its dimensional formula is called the dimensional equation of that physical quantity. The dimensions of the same fundamental quantity must be the same on either side of a dimensional equation.
Note
All physical quantities can be expressed as a combination of seven fundamental or base quantities. The dimensional formula of a given physical quantity is an expression showing the dimensions of the fundamental quantities. Dimensions of a physical quantity are the powers to which the base quantities are to be raised to represent that quantity.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
A circular hole of radius dfracR4 is made in a thin class 11 physics JEE_Main
The potential energy of a certain spring when stretched class 11 physics JEE_Main
The ratio of speed of sound in Hydrogen to that in class 11 physics JEE_MAIN
A roller of mass 300kg and of radius 50cm lying on class 12 physics JEE_Main