
The dimension of electric permittivity is
(A) $M{L^3}{T^4}{A^{ - 2}}$
(B) $M{L^{ - 3}}{T^4}{A^2}$
(C) ${M^{ - 1}}{L^3}{T^4}{A^2}$
(D) ${M^{ - 1}}{L^{ - 3}}{T^4}{A^2}$
Answer
123.9k+ views
Hint: We will know the fundamental dimensional formulas in the beginning. Then we have to find the formulas for different quantities present in the expression. After putting them in the expression, the required dimensional formula can be found.
Complete step-by-step solution:
The dimensional formulas for mass, time, current, and length are $M$ , $T$ , $A$ and $L$ respectively.
Now, we will see the dimensions of force $\left( F \right)$ , charges $\left( {{q_1},{q_2}} \right)$ separately.
Force is known as the multiplication of mass and acceleration. Also, acceleration is the change in velocity per unit of time. So, the dimension is $L{T^{ - 2}}$ . Hence, the dimension of force is given by,
$\left[ F \right] = \left[ {mass} \right].\left[ {acceleration} \right] = ML{T^{ - 2}}$
Again, the electric charge is given by the product of current and time. So, the dimension of the electric charge is, $\left[ q \right] = AT$ .
Now, the given formula is
$F = \dfrac{1}{{4\pi \varepsilon }}.\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Hence, the dimension of permittivity in free space is known as,
$\left[ \varepsilon \right] = \dfrac{{\left[ {{q_1}} \right].\left[ {{q_2}} \right]}}{{\left[ F \right].\left[ {{r^2}} \right]}}$
The factor $4\pi $ is constant and doesn’t have any dimension. So, after putting all the dimensions in the above equation and adding the different powers appropriately, we obtain,
$\left[ \varepsilon \right] = \dfrac{{\left[ {AT} \right]\left[ {AT} \right]}}{{\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}}$
$ \Rightarrow \left[ \varepsilon \right] = \dfrac{{\left[ {{A^2}{T^2}} \right]}}{{\left[ {M{L^3}{T^{ - 2}}} \right]}}$
On further solving the above equation,
$\left[ \varepsilon \right] = \left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]$
Hence, option (D) is the correct answer.
Additional information: Some quantities don’t have any dimension at all. They are the ratio of two quantities that have equal dimensional formulas. They are called dimensionless quantities. An example of such a quantity is the angle. The dielectric constant is another example of a dimensionless quantity. It doesn’t have any dimension since it is the ratio of two permittivities.
There are some more fundamental dimensional formulas like,
[Temperature] = $\theta $ , [Amount of matter] = $N$ , [Luminous intensity] = $J$ .
The dimensional formulas for any other physical quantities can be obtained by the seven fundamental dimensions.
Note: Keep in mind that the dimensions for ${q_1}$ and ${q_2}$ are the same since both are different values of the same physical quantity called electric charge. Be very careful while adding and subtracting the powers of different dimensions. The numerical factors like $3,4,7,....$, etc. don’t have any dimension.
Complete step-by-step solution:
The dimensional formulas for mass, time, current, and length are $M$ , $T$ , $A$ and $L$ respectively.
Now, we will see the dimensions of force $\left( F \right)$ , charges $\left( {{q_1},{q_2}} \right)$ separately.
Force is known as the multiplication of mass and acceleration. Also, acceleration is the change in velocity per unit of time. So, the dimension is $L{T^{ - 2}}$ . Hence, the dimension of force is given by,
$\left[ F \right] = \left[ {mass} \right].\left[ {acceleration} \right] = ML{T^{ - 2}}$
Again, the electric charge is given by the product of current and time. So, the dimension of the electric charge is, $\left[ q \right] = AT$ .
Now, the given formula is
$F = \dfrac{1}{{4\pi \varepsilon }}.\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Hence, the dimension of permittivity in free space is known as,
$\left[ \varepsilon \right] = \dfrac{{\left[ {{q_1}} \right].\left[ {{q_2}} \right]}}{{\left[ F \right].\left[ {{r^2}} \right]}}$
The factor $4\pi $ is constant and doesn’t have any dimension. So, after putting all the dimensions in the above equation and adding the different powers appropriately, we obtain,
$\left[ \varepsilon \right] = \dfrac{{\left[ {AT} \right]\left[ {AT} \right]}}{{\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}}$
$ \Rightarrow \left[ \varepsilon \right] = \dfrac{{\left[ {{A^2}{T^2}} \right]}}{{\left[ {M{L^3}{T^{ - 2}}} \right]}}$
On further solving the above equation,
$\left[ \varepsilon \right] = \left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]$
Hence, option (D) is the correct answer.
Additional information: Some quantities don’t have any dimension at all. They are the ratio of two quantities that have equal dimensional formulas. They are called dimensionless quantities. An example of such a quantity is the angle. The dielectric constant is another example of a dimensionless quantity. It doesn’t have any dimension since it is the ratio of two permittivities.
There are some more fundamental dimensional formulas like,
[Temperature] = $\theta $ , [Amount of matter] = $N$ , [Luminous intensity] = $J$ .
The dimensional formulas for any other physical quantities can be obtained by the seven fundamental dimensions.
Note: Keep in mind that the dimensions for ${q_1}$ and ${q_2}$ are the same since both are different values of the same physical quantity called electric charge. Be very careful while adding and subtracting the powers of different dimensions. The numerical factors like $3,4,7,....$, etc. don’t have any dimension.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
