
The difference of the two angles in degree measure is 1 and their sum in radian measure is also 1. What are the angles in circular measure?
A. \[\left( {\dfrac{1}{2} - \dfrac{\pi }{{360}}} \right),\left( {\dfrac{1}{2} + \dfrac{\pi }{{360}}} \right)\]
B. \[\left( {\dfrac{1}{2} - \dfrac{{90}}{\pi }} \right),\left( {\dfrac{1}{2} + \dfrac{{90}}{\pi }} \right)\]
C. \[\left( {\dfrac{1}{2} - \dfrac{\pi }{{180}}} \right),\left( {\dfrac{1}{2} + \dfrac{\pi }{{180}}} \right)\]
D. None of these
Answer
233.1k+ views
Hint: Here, we will use when \[\alpha \] is an angle in degree measure then the relation between circular and degree measure is \[{\alpha ^C} = \dfrac{\pi }{{180}} \times \alpha \].
Apply this relation, and then use the given conditions to find the required value.
Complete step-by-step solution:
Given that the difference of the two angles in degree measure is 1 and their sum in radian measure is also 1.
Let us assume that the two angles are \[X\] and \[Y\] in degree measure.
We know that if \[\alpha \] is an angle in degree measure then the relation between circular and degree measure is \[{\alpha ^C} = \dfrac{\pi }{{180}} \times \alpha \].
First, we will find the equation representing the difference of the two angles in degree measure is 1.
\[X - Y = 1\]
But since the difference of the two angles is in degree measure, so we can write \[\dfrac{\pi }{{180}} = 1\].
Using this value of 1 in the above equation, we get
\[X - Y = \dfrac{\pi }{{180}}{\text{ ......}}\left( 1 \right)\]
We will now find the equation representing the sum of the two angles in radian measure is 1.
\[X + Y = 1{\text{ ......}}\left( 2 \right)\]
Subtracting the above equation by \[Y\] on each of the sides, we get
\[
\Rightarrow X + Y - Y = 1 - Y \\
\Rightarrow X = 1 - Y{\text{ .......}}\left( 3 \right) \\
\]
Substituting this value of \[X\] in the equation \[\left( 1 \right)\], we get
\[
\Rightarrow \left( {1 - Y} \right) - Y = \dfrac{\pi }{{180}} \\
\Rightarrow 1 - 2Y = \dfrac{\pi }{{180}} \\
\]
Subtracting the above equation by 1 on each of the sides, we get
\[
\Rightarrow 1 - 2Y - 1 = \dfrac{\pi }{{180}} - 1 \\
\Rightarrow - 2Y = \dfrac{\pi }{{180}} - 1 \\
\]
Dividing the above equation by \[ - 2\] on each of the sides, we get
\[
\Rightarrow \dfrac{{ - 2Y}}{{ - 2}} = \dfrac{1}{{ - 2}}\left( {\dfrac{\pi }{{180}} - 1} \right) \\
\Rightarrow Y = - \dfrac{\pi }{{360}} + \dfrac{1}{2} \\
\Rightarrow Y = \dfrac{1}{2} - \dfrac{\pi }{{360}} \\
\]
Substituting this value of \[Y\] in the equation \[\left( 3 \right)\], we get
\[
\Rightarrow X = 1 - \left( {\dfrac{1}{2} - \dfrac{\pi }{{360}}} \right) \\
\Rightarrow X = 1 - \dfrac{1}{2} + \dfrac{\pi }{{180}} \\
\Rightarrow X = \dfrac{1}{2} + \dfrac{\pi }{{360}} \\
\]
Therefore, the angles in circular measure are \[\dfrac{1}{2} + \dfrac{\pi }{{360}}\] and \[\dfrac{1}{2} - \dfrac{\pi }{{360}}\].
Hence, the option A is correct.
Note: In solving these types of questions, you should be familiar with the concept of circular measure and degree measures. Then use the given conditions and values given in the question, to find the required values. Also, we are supposed to write the values properly to avoid any miscalculation.
Apply this relation, and then use the given conditions to find the required value.
Complete step-by-step solution:
Given that the difference of the two angles in degree measure is 1 and their sum in radian measure is also 1.
Let us assume that the two angles are \[X\] and \[Y\] in degree measure.
We know that if \[\alpha \] is an angle in degree measure then the relation between circular and degree measure is \[{\alpha ^C} = \dfrac{\pi }{{180}} \times \alpha \].
First, we will find the equation representing the difference of the two angles in degree measure is 1.
\[X - Y = 1\]
But since the difference of the two angles is in degree measure, so we can write \[\dfrac{\pi }{{180}} = 1\].
Using this value of 1 in the above equation, we get
\[X - Y = \dfrac{\pi }{{180}}{\text{ ......}}\left( 1 \right)\]
We will now find the equation representing the sum of the two angles in radian measure is 1.
\[X + Y = 1{\text{ ......}}\left( 2 \right)\]
Subtracting the above equation by \[Y\] on each of the sides, we get
\[
\Rightarrow X + Y - Y = 1 - Y \\
\Rightarrow X = 1 - Y{\text{ .......}}\left( 3 \right) \\
\]
Substituting this value of \[X\] in the equation \[\left( 1 \right)\], we get
\[
\Rightarrow \left( {1 - Y} \right) - Y = \dfrac{\pi }{{180}} \\
\Rightarrow 1 - 2Y = \dfrac{\pi }{{180}} \\
\]
Subtracting the above equation by 1 on each of the sides, we get
\[
\Rightarrow 1 - 2Y - 1 = \dfrac{\pi }{{180}} - 1 \\
\Rightarrow - 2Y = \dfrac{\pi }{{180}} - 1 \\
\]
Dividing the above equation by \[ - 2\] on each of the sides, we get
\[
\Rightarrow \dfrac{{ - 2Y}}{{ - 2}} = \dfrac{1}{{ - 2}}\left( {\dfrac{\pi }{{180}} - 1} \right) \\
\Rightarrow Y = - \dfrac{\pi }{{360}} + \dfrac{1}{2} \\
\Rightarrow Y = \dfrac{1}{2} - \dfrac{\pi }{{360}} \\
\]
Substituting this value of \[Y\] in the equation \[\left( 3 \right)\], we get
\[
\Rightarrow X = 1 - \left( {\dfrac{1}{2} - \dfrac{\pi }{{360}}} \right) \\
\Rightarrow X = 1 - \dfrac{1}{2} + \dfrac{\pi }{{180}} \\
\Rightarrow X = \dfrac{1}{2} + \dfrac{\pi }{{360}} \\
\]
Therefore, the angles in circular measure are \[\dfrac{1}{2} + \dfrac{\pi }{{360}}\] and \[\dfrac{1}{2} - \dfrac{\pi }{{360}}\].
Hence, the option A is correct.
Note: In solving these types of questions, you should be familiar with the concept of circular measure and degree measures. Then use the given conditions and values given in the question, to find the required values. Also, we are supposed to write the values properly to avoid any miscalculation.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

