
The diagram below shows a modified meter bridge which is used for measuring two unknown resistances at the same time. The first galvanometer gives the balance point at C and the second one fives the balance point at D. Using the details given in the diagram, find out the values of \[{R_1}\] and\[{R_2}\] [This question may have multiple correct options].

(A) \[{R_1} = \dfrac{{5R}}{3}\]
(B) \[{R_2} = \dfrac{{4R}}{3}\]
(C) \[{R_1} = \dfrac{{4R}}{3}\]
(D) \[{R_2} = \dfrac{{5R}}{3}\]
Answer
123k+ views
Hint: When a meter bridge is balanced at a certain point, it is used to find the unknown resistances in its setup. In this question, the two galvanometers work independently. So, the two unknown resistances can be found by solving linear equations made with the help of balance.
Formula used: \[\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{l}{{total - l}}\] where \[{R_1}\] and \[{R_2}\] are two resistances on either side of the galvanometer jockey, $l$ is the length at which the jockey is touched on the scale and total is the full length of the meter scale.
Complete step by step answer:
In a meter bridge, the galvanometer is connected between the resistances to the wire using a jockey. As the jockey touches the taut wire at some point, an electrical connection is established that renders a balance between the total resistance per unit length on both sides of the point.
In this question, the galvanometer touches two points and we are asked to find two unknown resistances. Let us first calculate the distances AC, CB and AD, DB so that the two sides can be easily balanced.
\[AC = \dfrac{l}{4}\]
\[CB = l - \dfrac{l}{4} = \dfrac{{3l}}{4}\]
\[AD = \dfrac{{2l}}{3}\]
\[DB = l - \dfrac{{2l}}{3} = \dfrac{l}{3}\]
Now, using the balance equation at point C we try to find the values of unknown resistances as:
\[\dfrac{R}{{{R_1} + {R_2}}} = \dfrac{{AC}}{{CB}}\]
Putting the values of AC and CB, we get:
\[\dfrac{R}{{{R_1} + {R_2}}} = \dfrac{{\dfrac{l}{4}}}{{\dfrac{{3l}}{4}}}\]
\[ \Rightarrow \dfrac{R}{{{R_1} + {R_2}}} = \dfrac{1}{3}\] [By dividing and cancelling $l$]
Cross-multiplying and rearranging the two gives us:
\[
3R = {R_1} + {R_2} \\
\Rightarrow {R_1} = 3R - {R_2} \\
\] [Eq. 1]
Similarly, using the balance equation at point D we get,
\[\dfrac{{R + {R_1}}}{{{R_2}}} = \dfrac{{AD}}{{DB}}\]
Putting the values of AD and DB gives us:
\[\dfrac{{R + {R_1}}}{{{R_2}}} = \dfrac{{\dfrac{{2l}}{3}}}{{\dfrac{l}{3}}}\]
\[ \Rightarrow \dfrac{{R + {R_1}}}{{{R_2}}} = 2\][By dividing and cancelling $\dfrac{l}{3}$]
Upon cross-multiplying and rearranging, we get:
\[R + {R_1} = 2{R_2}\]
\[ \Rightarrow {R_1} = 2{R_2} - R\] [Eq. 2]
We can see that both Eq. 1 and Eq.2 have\[{R_1}\]on their LHS. Hence, we can equate to two to get:
\[3R - {R_2} = 2{R_2} - R\]
\[3{R_2} = 4R\] [Using linear algebra]
This gives us \[{R_2} = \dfrac{{4R}}{3}\]
We put this value in Eq. 1:
\[{R_1} = 3R - \dfrac{{4R}}{3}\]
Taking the LCM and simplifying we get,
\[ \Rightarrow {R_1} = \dfrac{{9R - 4R}}{3} = \dfrac{{5R}}{3}\]
Hence, we can see that the options A and B are correct.
Note: A meter bridge works on the principle of a Wheatstone bridge. It is mostly used to identify unknown resistance when a set of known resistances are provided, just like the Wheatstone. The meter bridge provides very accurate measurements for resistance because the ammeter and voltmeter are not involved and their intrinsic resistances do not affect the readings.
Formula used: \[\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{l}{{total - l}}\] where \[{R_1}\] and \[{R_2}\] are two resistances on either side of the galvanometer jockey, $l$ is the length at which the jockey is touched on the scale and total is the full length of the meter scale.
Complete step by step answer:
In a meter bridge, the galvanometer is connected between the resistances to the wire using a jockey. As the jockey touches the taut wire at some point, an electrical connection is established that renders a balance between the total resistance per unit length on both sides of the point.
In this question, the galvanometer touches two points and we are asked to find two unknown resistances. Let us first calculate the distances AC, CB and AD, DB so that the two sides can be easily balanced.
\[AC = \dfrac{l}{4}\]
\[CB = l - \dfrac{l}{4} = \dfrac{{3l}}{4}\]
\[AD = \dfrac{{2l}}{3}\]
\[DB = l - \dfrac{{2l}}{3} = \dfrac{l}{3}\]
Now, using the balance equation at point C we try to find the values of unknown resistances as:
\[\dfrac{R}{{{R_1} + {R_2}}} = \dfrac{{AC}}{{CB}}\]
Putting the values of AC and CB, we get:
\[\dfrac{R}{{{R_1} + {R_2}}} = \dfrac{{\dfrac{l}{4}}}{{\dfrac{{3l}}{4}}}\]
\[ \Rightarrow \dfrac{R}{{{R_1} + {R_2}}} = \dfrac{1}{3}\] [By dividing and cancelling $l$]
Cross-multiplying and rearranging the two gives us:
\[
3R = {R_1} + {R_2} \\
\Rightarrow {R_1} = 3R - {R_2} \\
\] [Eq. 1]
Similarly, using the balance equation at point D we get,
\[\dfrac{{R + {R_1}}}{{{R_2}}} = \dfrac{{AD}}{{DB}}\]
Putting the values of AD and DB gives us:
\[\dfrac{{R + {R_1}}}{{{R_2}}} = \dfrac{{\dfrac{{2l}}{3}}}{{\dfrac{l}{3}}}\]
\[ \Rightarrow \dfrac{{R + {R_1}}}{{{R_2}}} = 2\][By dividing and cancelling $\dfrac{l}{3}$]
Upon cross-multiplying and rearranging, we get:
\[R + {R_1} = 2{R_2}\]
\[ \Rightarrow {R_1} = 2{R_2} - R\] [Eq. 2]
We can see that both Eq. 1 and Eq.2 have\[{R_1}\]on their LHS. Hence, we can equate to two to get:
\[3R - {R_2} = 2{R_2} - R\]
\[3{R_2} = 4R\] [Using linear algebra]
This gives us \[{R_2} = \dfrac{{4R}}{3}\]
We put this value in Eq. 1:
\[{R_1} = 3R - \dfrac{{4R}}{3}\]
Taking the LCM and simplifying we get,
\[ \Rightarrow {R_1} = \dfrac{{9R - 4R}}{3} = \dfrac{{5R}}{3}\]
Hence, we can see that the options A and B are correct.
Note: A meter bridge works on the principle of a Wheatstone bridge. It is mostly used to identify unknown resistance when a set of known resistances are provided, just like the Wheatstone. The meter bridge provides very accurate measurements for resistance because the ammeter and voltmeter are not involved and their intrinsic resistances do not affect the readings.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Chemistry Exam Pattern 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main
