
The derivative of \[{\cos ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)\]w.r.t \[{\cot ^{ - 1}}\left( {\frac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right)\].
(1) 1
(2) \[\frac{3}{2}\]
(3) \[\frac{2}{3}\]
(4) \[\frac{1}{2}\]
Answer
162k+ views
Hint: This question is done using the concept, that is, the substitution of the variables. Variables are substituted by another variable which will help to simplify the given expression.
Formula Used: 1) \[\begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cot 3\theta }& = &{\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}}
\end{array}\]
Complete step by step Solution:
Whenever differentiation of any expression has to be found w.r.t another expression, there is used a formula that is,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Let us assume that y and z are two expressions respectively which is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\left( {\frac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right)}
\end{array}\]
Before moving forward, simplify these expressions. For this purpose, substitute x with another variable. Therefore, we can write.
\[ \Rightarrow \begin{array}{*{20}{c}}
x& = &{\tan }
\end{array}\theta \]
And
\[\begin{array}{*{20}{c}}
\theta & = &{{{\tan }^{ - 1}}x}
\end{array}\]
Now, put the value of x in the above expressions. We will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\left( {\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\left( {\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}} \right)}
\end{array}\]
Some trigonometric formulas will now be used to reduce the above expression. So we know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \cos 2\theta }& = &{\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\cot 3\theta }& = &{\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}}
\end{array}\]
Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\cos 2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\cot 3\theta }
\end{array}\]
And then,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{3\theta }
\end{array}\]
Now again substitute the value of the \[\theta \]. Therefore, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2{{\tan }^{ - 1}}x}
\end{array}\] and \[\begin{array}{*{20}{c}}
{ \Rightarrow z}& = &{3{{\tan }^{ - 1}}x}
\end{array}\]
Now differentiate both the expressions with respect to the x. So, we will get it.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dx}}}& = &{2\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}
\end{array}\]
Now we know that the differentiation of the \[{\tan ^{ - 1}}x\]is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}& = &{\frac{1}{{1 + {x^2}}}}
\end{array}\]
Therefore, from the above expression, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dx}}}& = &{\frac{2}{{1 + {x^2}}}}
\end{array}\] …………….. (a)
And now differentiate the expression z with respect to the x. So, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dz}}{{dx}}}& = &{\frac{3}{{1 + {x^2}}}}
\end{array}\]………….. (b)
According to the question, we will have to find the derivative of one expression with respect to another expression, so we will apply,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Now from the equation (a) and (b), we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{{\frac{2}{{1 + {x^2}}}}}{{\frac{3}{{1 + {x^2}}}}}}
\end{array}\]
Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{2}{3}}
\end{array}\]
Now the final answer is \[\frac{2}{3}\]
Hence, the correct option is 3.
Note: Use all the fundamentals of trigonometry and differentiation to reach the final answer. First, simplify both expressions by substituting the variables and then differentiate both expressions with respect to the x.
Formula Used: 1) \[\begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cot 3\theta }& = &{\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}}
\end{array}\]
Complete step by step Solution:
Whenever differentiation of any expression has to be found w.r.t another expression, there is used a formula that is,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Let us assume that y and z are two expressions respectively which is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\left( {\frac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right)}
\end{array}\]
Before moving forward, simplify these expressions. For this purpose, substitute x with another variable. Therefore, we can write.
\[ \Rightarrow \begin{array}{*{20}{c}}
x& = &{\tan }
\end{array}\theta \]
And
\[\begin{array}{*{20}{c}}
\theta & = &{{{\tan }^{ - 1}}x}
\end{array}\]
Now, put the value of x in the above expressions. We will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\left( {\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\left( {\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}} \right)}
\end{array}\]
Some trigonometric formulas will now be used to reduce the above expression. So we know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \cos 2\theta }& = &{\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\cot 3\theta }& = &{\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}}
\end{array}\]
Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\cos 2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\cot 3\theta }
\end{array}\]
And then,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{3\theta }
\end{array}\]
Now again substitute the value of the \[\theta \]. Therefore, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2{{\tan }^{ - 1}}x}
\end{array}\] and \[\begin{array}{*{20}{c}}
{ \Rightarrow z}& = &{3{{\tan }^{ - 1}}x}
\end{array}\]
Now differentiate both the expressions with respect to the x. So, we will get it.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dx}}}& = &{2\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}
\end{array}\]
Now we know that the differentiation of the \[{\tan ^{ - 1}}x\]is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}& = &{\frac{1}{{1 + {x^2}}}}
\end{array}\]
Therefore, from the above expression, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dx}}}& = &{\frac{2}{{1 + {x^2}}}}
\end{array}\] …………….. (a)
And now differentiate the expression z with respect to the x. So, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dz}}{{dx}}}& = &{\frac{3}{{1 + {x^2}}}}
\end{array}\]………….. (b)
According to the question, we will have to find the derivative of one expression with respect to another expression, so we will apply,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Now from the equation (a) and (b), we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{{\frac{2}{{1 + {x^2}}}}}{{\frac{3}{{1 + {x^2}}}}}}
\end{array}\]
Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{2}{3}}
\end{array}\]
Now the final answer is \[\frac{2}{3}\]
Hence, the correct option is 3.
Note: Use all the fundamentals of trigonometry and differentiation to reach the final answer. First, simplify both expressions by substituting the variables and then differentiate both expressions with respect to the x.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
