
The density of the core of a planet is ${{p}_{1}}$and that of the outer shell is ${{p}_{2}}$. The radii of the core and that of the planets are R and 2R respectively. The acceleration due to gravity at the surface of the planet is the same as at a depth R. The ratio of density ${{p}_{1}}/{{p}_{2}}$ will be:

(A) $7/3$
(B) $5/3$
(C) $8/3$
(D) $1/3$
Answer
233.1k+ views
Hint Acceleration due to gravity is defined as the acceleration which is gained by an object due to the gravitational force. The SI unit is given as a meter per second square. Based on this concept we can solve this question.
Complete step by step answer
Suppose, the mass of the core of the planet is m and that of the outer shell is m.
So, the field on the surface of the core is $\dfrac{Gm}{{{R}^{2}}}$.
And, on the surface of the shell it will be $\dfrac{G(m+{{m}^{/}})}{{{(2R)}^{2}}}$.
So, we can find that:
$\dfrac{Gm}{{{R}^{2}}}=\dfrac{G(m+{{m}^{/}})}{{{(2R)}^{2}}}$
So, we can say that:
$4m=m+{{m}^{/}}$
$\Rightarrow {{m}^{/}}=3m$
Let us consider that $m=\dfrac{4}{3}\pi {{R}^{3}}{{p}_{1}}$
So, we can evaluate that:
$3m=3\left( \dfrac{4}{3}\pi {{R}^{3}}{{p}_{1}} \right)={{m}^{/}}=\dfrac{4}{3}\pi 7{{R}^{3}}{{p}_{2}}$
So, the value we get that:
${{p}_{1}}=\dfrac{7}{3}{{p}_{2}}$
So, the ratio of ${{p}_{1}}/{{p}_{2}}$is given as $7/3$.
Note We should know that the gravitational force depends on two factors : the mass and the distance. If the mass of one object is doubled then force of gravity between the objects also gets doubled. Increasing the distance, results in the lowering of the gravitational force.
Complete step by step answer
Suppose, the mass of the core of the planet is m and that of the outer shell is m.
So, the field on the surface of the core is $\dfrac{Gm}{{{R}^{2}}}$.
And, on the surface of the shell it will be $\dfrac{G(m+{{m}^{/}})}{{{(2R)}^{2}}}$.
So, we can find that:
$\dfrac{Gm}{{{R}^{2}}}=\dfrac{G(m+{{m}^{/}})}{{{(2R)}^{2}}}$
So, we can say that:
$4m=m+{{m}^{/}}$
$\Rightarrow {{m}^{/}}=3m$
Let us consider that $m=\dfrac{4}{3}\pi {{R}^{3}}{{p}_{1}}$
So, we can evaluate that:
$3m=3\left( \dfrac{4}{3}\pi {{R}^{3}}{{p}_{1}} \right)={{m}^{/}}=\dfrac{4}{3}\pi 7{{R}^{3}}{{p}_{2}}$
So, the value we get that:
${{p}_{1}}=\dfrac{7}{3}{{p}_{2}}$
So, the ratio of ${{p}_{1}}/{{p}_{2}}$is given as $7/3$.
Note We should know that the gravitational force depends on two factors : the mass and the distance. If the mass of one object is doubled then force of gravity between the objects also gets doubled. Increasing the distance, results in the lowering of the gravitational force.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

