
The density of an electron - hole pair in a pure germanium is $3 \times {10^{16}}{m^{ - 3}}$ at room temperature. On doping with aluminium, the hole density increases to $4.5 \times {10^{22}}{m^{ - 3}}$ . Now the electron density ( in ${m^{ - 3}}$ ) in doped germanium will be?
(A) $1 \times {10^{10}}$
(B) $2 \times {10^{10}}$
(C) $0.5 \times {10^{10}}$
(D) $4 \times {10^{10}}$
Answer
232.5k+ views
Hint: Use the formula : ${n_h}{n_e} = {n_i}^2$
where, ${n_h}$ is the extrinsic number density of holes after doping in the semiconductor
${n_e}$ is the extrinsic number density of electrons after doping in the semiconductor
and, ${n_i}$ is the intrinsic number density of electron - hole pairs in pure semiconductor
Complete step by step solution
We are given the density of electron hole pairs in pure germanium to be $3 \times {10^{16}}{m^{ - 3}}$. This is the intrinsic density or the density of electron hole pairs, before doping.
\[ \Rightarrow {n_i} = 3 \times {10^{16}}{m^{ - 3}}\]
We are also given the density of holes in extrinsic germanium to be $4.5 \times {10^{22}}{m^{ - 3}}$, i.e. after it has been doped with aluminium.
\[ \Rightarrow {n_h} = 4.5 \times {10^{22}}{m^{ - 3}}\]
We have to find the density of electrons in extrinsic germanium, i.e. after it has been doped with aluminium. This means we have to find ${n_e}$.
We know the formula ${n_h}{n_e} = {n_i}^2$, we will find an expression for ${n_e}$ from this,
\[
\Rightarrow {n_h}{n_e} = {n_i}^2 \\
\Rightarrow {n_e} = \dfrac{{{n_i}^2}}{{{n_h}}} \\
\]
Now substituting all the known values to the right hand side of above equation,
\[ \Rightarrow {n_e} = \dfrac{{{{\left( {3 \times {{10}^{16}}{m^{ - 3}}} \right)}^2}}}{{4.5 \times {{10}^{22}}{m^{ - 3}}}}\]
\[ \Rightarrow {n_e} = \dfrac{{9 \times {{10}^{32}}{m^{ - 6}}}}{{4.5 \times {{10}^{22}}{m^{ - 3}}}}\]
\[ \Rightarrow {n_e} = 2 \times {10^{10}}{m^{ - 3}}\]
Therefore, option (B) is correct.
Note: Doping means the introduction of impurities into a pure semiconductor crystal on purpose, to alter the concentration of electrons or holes in it. Here, aluminium is added to a pure germanium semiconductor crystal. Aluminium has 3 valence electrons, i.e. it is a trivalent impurity. Addition of a trivalent impurity causes the concentration of holes to increase, and the semiconductor to become a p -type extrinsic semiconductor. Hence, the density of holes should be more than the density of electrons for such a case, which is in agreement with our values of \[{n_e}\] and \[{n_h}\].
where, ${n_h}$ is the extrinsic number density of holes after doping in the semiconductor
${n_e}$ is the extrinsic number density of electrons after doping in the semiconductor
and, ${n_i}$ is the intrinsic number density of electron - hole pairs in pure semiconductor
Complete step by step solution
We are given the density of electron hole pairs in pure germanium to be $3 \times {10^{16}}{m^{ - 3}}$. This is the intrinsic density or the density of electron hole pairs, before doping.
\[ \Rightarrow {n_i} = 3 \times {10^{16}}{m^{ - 3}}\]
We are also given the density of holes in extrinsic germanium to be $4.5 \times {10^{22}}{m^{ - 3}}$, i.e. after it has been doped with aluminium.
\[ \Rightarrow {n_h} = 4.5 \times {10^{22}}{m^{ - 3}}\]
We have to find the density of electrons in extrinsic germanium, i.e. after it has been doped with aluminium. This means we have to find ${n_e}$.
We know the formula ${n_h}{n_e} = {n_i}^2$, we will find an expression for ${n_e}$ from this,
\[
\Rightarrow {n_h}{n_e} = {n_i}^2 \\
\Rightarrow {n_e} = \dfrac{{{n_i}^2}}{{{n_h}}} \\
\]
Now substituting all the known values to the right hand side of above equation,
\[ \Rightarrow {n_e} = \dfrac{{{{\left( {3 \times {{10}^{16}}{m^{ - 3}}} \right)}^2}}}{{4.5 \times {{10}^{22}}{m^{ - 3}}}}\]
\[ \Rightarrow {n_e} = \dfrac{{9 \times {{10}^{32}}{m^{ - 6}}}}{{4.5 \times {{10}^{22}}{m^{ - 3}}}}\]
\[ \Rightarrow {n_e} = 2 \times {10^{10}}{m^{ - 3}}\]
Therefore, option (B) is correct.
Note: Doping means the introduction of impurities into a pure semiconductor crystal on purpose, to alter the concentration of electrons or holes in it. Here, aluminium is added to a pure germanium semiconductor crystal. Aluminium has 3 valence electrons, i.e. it is a trivalent impurity. Addition of a trivalent impurity causes the concentration of holes to increase, and the semiconductor to become a p -type extrinsic semiconductor. Hence, the density of holes should be more than the density of electrons for such a case, which is in agreement with our values of \[{n_e}\] and \[{n_h}\].
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

