
The density of an electron - hole pair in a pure germanium is $3 \times {10^{16}}{m^{ - 3}}$ at room temperature. On doping with aluminium, the hole density increases to $4.5 \times {10^{22}}{m^{ - 3}}$ . Now the electron density ( in ${m^{ - 3}}$ ) in doped germanium will be?
(A) $1 \times {10^{10}}$
(B) $2 \times {10^{10}}$
(C) $0.5 \times {10^{10}}$
(D) $4 \times {10^{10}}$
Answer
152.7k+ views
Hint: Use the formula : ${n_h}{n_e} = {n_i}^2$
where, ${n_h}$ is the extrinsic number density of holes after doping in the semiconductor
${n_e}$ is the extrinsic number density of electrons after doping in the semiconductor
and, ${n_i}$ is the intrinsic number density of electron - hole pairs in pure semiconductor
Complete step by step solution
We are given the density of electron hole pairs in pure germanium to be $3 \times {10^{16}}{m^{ - 3}}$. This is the intrinsic density or the density of electron hole pairs, before doping.
\[ \Rightarrow {n_i} = 3 \times {10^{16}}{m^{ - 3}}\]
We are also given the density of holes in extrinsic germanium to be $4.5 \times {10^{22}}{m^{ - 3}}$, i.e. after it has been doped with aluminium.
\[ \Rightarrow {n_h} = 4.5 \times {10^{22}}{m^{ - 3}}\]
We have to find the density of electrons in extrinsic germanium, i.e. after it has been doped with aluminium. This means we have to find ${n_e}$.
We know the formula ${n_h}{n_e} = {n_i}^2$, we will find an expression for ${n_e}$ from this,
\[
\Rightarrow {n_h}{n_e} = {n_i}^2 \\
\Rightarrow {n_e} = \dfrac{{{n_i}^2}}{{{n_h}}} \\
\]
Now substituting all the known values to the right hand side of above equation,
\[ \Rightarrow {n_e} = \dfrac{{{{\left( {3 \times {{10}^{16}}{m^{ - 3}}} \right)}^2}}}{{4.5 \times {{10}^{22}}{m^{ - 3}}}}\]
\[ \Rightarrow {n_e} = \dfrac{{9 \times {{10}^{32}}{m^{ - 6}}}}{{4.5 \times {{10}^{22}}{m^{ - 3}}}}\]
\[ \Rightarrow {n_e} = 2 \times {10^{10}}{m^{ - 3}}\]
Therefore, option (B) is correct.
Note: Doping means the introduction of impurities into a pure semiconductor crystal on purpose, to alter the concentration of electrons or holes in it. Here, aluminium is added to a pure germanium semiconductor crystal. Aluminium has 3 valence electrons, i.e. it is a trivalent impurity. Addition of a trivalent impurity causes the concentration of holes to increase, and the semiconductor to become a p -type extrinsic semiconductor. Hence, the density of holes should be more than the density of electrons for such a case, which is in agreement with our values of \[{n_e}\] and \[{n_h}\].
where, ${n_h}$ is the extrinsic number density of holes after doping in the semiconductor
${n_e}$ is the extrinsic number density of electrons after doping in the semiconductor
and, ${n_i}$ is the intrinsic number density of electron - hole pairs in pure semiconductor
Complete step by step solution
We are given the density of electron hole pairs in pure germanium to be $3 \times {10^{16}}{m^{ - 3}}$. This is the intrinsic density or the density of electron hole pairs, before doping.
\[ \Rightarrow {n_i} = 3 \times {10^{16}}{m^{ - 3}}\]
We are also given the density of holes in extrinsic germanium to be $4.5 \times {10^{22}}{m^{ - 3}}$, i.e. after it has been doped with aluminium.
\[ \Rightarrow {n_h} = 4.5 \times {10^{22}}{m^{ - 3}}\]
We have to find the density of electrons in extrinsic germanium, i.e. after it has been doped with aluminium. This means we have to find ${n_e}$.
We know the formula ${n_h}{n_e} = {n_i}^2$, we will find an expression for ${n_e}$ from this,
\[
\Rightarrow {n_h}{n_e} = {n_i}^2 \\
\Rightarrow {n_e} = \dfrac{{{n_i}^2}}{{{n_h}}} \\
\]
Now substituting all the known values to the right hand side of above equation,
\[ \Rightarrow {n_e} = \dfrac{{{{\left( {3 \times {{10}^{16}}{m^{ - 3}}} \right)}^2}}}{{4.5 \times {{10}^{22}}{m^{ - 3}}}}\]
\[ \Rightarrow {n_e} = \dfrac{{9 \times {{10}^{32}}{m^{ - 6}}}}{{4.5 \times {{10}^{22}}{m^{ - 3}}}}\]
\[ \Rightarrow {n_e} = 2 \times {10^{10}}{m^{ - 3}}\]
Therefore, option (B) is correct.
Note: Doping means the introduction of impurities into a pure semiconductor crystal on purpose, to alter the concentration of electrons or holes in it. Here, aluminium is added to a pure germanium semiconductor crystal. Aluminium has 3 valence electrons, i.e. it is a trivalent impurity. Addition of a trivalent impurity causes the concentration of holes to increase, and the semiconductor to become a p -type extrinsic semiconductor. Hence, the density of holes should be more than the density of electrons for such a case, which is in agreement with our values of \[{n_e}\] and \[{n_h}\].
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE
