
The density of a nucleus in which mass of each nucleon is $1.67 \times {10^{ - 27}}kg$ and ${R_0} = 1.4 \times {10^{ - 15}}m$is:
(A) $2.995 \times {10^{17}}kg/{m^3}$
(B) $1.453 \times {10^{16}}kg/{m^3}$
(C) $1.453 \times {10^{19}}kg/{m^3}$
(D) $1.453 \times {10^{17}}kg/{m^3}$
Answer
217.5k+ views
Hint In the question mass of a single nucleon is given. We can use this to find the total mass of the nucleus. We know the formula for the radius of the nucleus. With the given values we can calculate the mass and volume of the nucleus. From this density can be calculated.
Formula used:
$\rho = \dfrac{m}{V}$ Where $\rho $stands for the density of the nucleus, $m$ stands for the mass of the nucleus, and $V$ stands for the volume of the nucleus.
Complete Step by step solution
Let $A$ be the number of nucleons in the nucleus.
Mass of each nucleon is given as, $1.67 \times {10^{ - 27}}kg$
Then the mass of the nucleus can be written as,
$m = A \times 1.67 \times {10^{ - 27}}kg$
The radius of a nucleus can be written as,
$R = {R_0}{A^{\dfrac{1}{3}}}$
It is given that, ${R_0} = 1.4 \times {10^{ - 15}}m$
Since the density of the nucleus can be written as $\rho = \dfrac{m}{V}$ we have to find the volume of the nucleus.
The nucleus is assumed to have a spherical shape. Therefore the volume of the nucleus can be written as,
$V = \dfrac{4}{3}\pi {R^3}$
Substituting $R = {R_0}{A^{\dfrac{1}{3}}}$ in the above equation, we get
$V = \dfrac{4}{3}\pi {\left( {{R_0}{A^{\dfrac{1}{3}}}} \right)^3}$
The volume of the nucleus is thus,
$V = \dfrac{4}{3}\pi R_0^3A$
The mass of the nucleus is,
$m = A \times 1.67 \times {10^{ - 27}}kg$
Now, we can write the density of the nucleus using the above values,
$\rho = \dfrac{m}{V} = \dfrac{{1.67 \times {{10}^{ - 27}}A}}{{\dfrac{4}{3}\pi R_0^3A}}$
$A$ will get cancelled and we substitute the value of ${R_0}$, we get
$\rho = \dfrac{{3 \times 1.67 \times {{10}^{ - 27}}}}{{4 \times 3.14 \times {{\left( {1.4 \times {{10}^{ - 15}}} \right)}^3}}} = 1.453 \times {10^{17}}$
The density of the nucleus will be $1.453 \times {10^{17}}kg/{m^3}$.
The answer is:
Option (D): $1.453 \times {10^{17}}kg/{m^3}$
Note
The nucleus consists of protons and neutrons, so they are collectively called nucleons. The mass number of an atom is the number of protons and neutrons. The mass of each nucleon is multiplied with the mass number to obtain the total mass of the nucleus.
Formula used:
$\rho = \dfrac{m}{V}$ Where $\rho $stands for the density of the nucleus, $m$ stands for the mass of the nucleus, and $V$ stands for the volume of the nucleus.
Complete Step by step solution
Let $A$ be the number of nucleons in the nucleus.
Mass of each nucleon is given as, $1.67 \times {10^{ - 27}}kg$
Then the mass of the nucleus can be written as,
$m = A \times 1.67 \times {10^{ - 27}}kg$
The radius of a nucleus can be written as,
$R = {R_0}{A^{\dfrac{1}{3}}}$
It is given that, ${R_0} = 1.4 \times {10^{ - 15}}m$
Since the density of the nucleus can be written as $\rho = \dfrac{m}{V}$ we have to find the volume of the nucleus.
The nucleus is assumed to have a spherical shape. Therefore the volume of the nucleus can be written as,
$V = \dfrac{4}{3}\pi {R^3}$
Substituting $R = {R_0}{A^{\dfrac{1}{3}}}$ in the above equation, we get
$V = \dfrac{4}{3}\pi {\left( {{R_0}{A^{\dfrac{1}{3}}}} \right)^3}$
The volume of the nucleus is thus,
$V = \dfrac{4}{3}\pi R_0^3A$
The mass of the nucleus is,
$m = A \times 1.67 \times {10^{ - 27}}kg$
Now, we can write the density of the nucleus using the above values,
$\rho = \dfrac{m}{V} = \dfrac{{1.67 \times {{10}^{ - 27}}A}}{{\dfrac{4}{3}\pi R_0^3A}}$
$A$ will get cancelled and we substitute the value of ${R_0}$, we get
$\rho = \dfrac{{3 \times 1.67 \times {{10}^{ - 27}}}}{{4 \times 3.14 \times {{\left( {1.4 \times {{10}^{ - 15}}} \right)}^3}}} = 1.453 \times {10^{17}}$
The density of the nucleus will be $1.453 \times {10^{17}}kg/{m^3}$.
The answer is:
Option (D): $1.453 \times {10^{17}}kg/{m^3}$
Note
The nucleus consists of protons and neutrons, so they are collectively called nucleons. The mass number of an atom is the number of protons and neutrons. The mass of each nucleon is multiplied with the mass number to obtain the total mass of the nucleus.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

