
The density of a nucleus in which mass of each nucleon is $1.67 \times {10^{ - 27}}kg$ and ${R_0} = 1.4 \times {10^{ - 15}}m$is:
(A) $2.995 \times {10^{17}}kg/{m^3}$
(B) $1.453 \times {10^{16}}kg/{m^3}$
(C) $1.453 \times {10^{19}}kg/{m^3}$
(D) $1.453 \times {10^{17}}kg/{m^3}$
Answer
123k+ views
Hint In the question mass of a single nucleon is given. We can use this to find the total mass of the nucleus. We know the formula for the radius of the nucleus. With the given values we can calculate the mass and volume of the nucleus. From this density can be calculated.
Formula used:
$\rho = \dfrac{m}{V}$ Where $\rho $stands for the density of the nucleus, $m$ stands for the mass of the nucleus, and $V$ stands for the volume of the nucleus.
Complete Step by step solution
Let $A$ be the number of nucleons in the nucleus.
Mass of each nucleon is given as, $1.67 \times {10^{ - 27}}kg$
Then the mass of the nucleus can be written as,
$m = A \times 1.67 \times {10^{ - 27}}kg$
The radius of a nucleus can be written as,
$R = {R_0}{A^{\dfrac{1}{3}}}$
It is given that, ${R_0} = 1.4 \times {10^{ - 15}}m$
Since the density of the nucleus can be written as $\rho = \dfrac{m}{V}$ we have to find the volume of the nucleus.
The nucleus is assumed to have a spherical shape. Therefore the volume of the nucleus can be written as,
$V = \dfrac{4}{3}\pi {R^3}$
Substituting $R = {R_0}{A^{\dfrac{1}{3}}}$ in the above equation, we get
$V = \dfrac{4}{3}\pi {\left( {{R_0}{A^{\dfrac{1}{3}}}} \right)^3}$
The volume of the nucleus is thus,
$V = \dfrac{4}{3}\pi R_0^3A$
The mass of the nucleus is,
$m = A \times 1.67 \times {10^{ - 27}}kg$
Now, we can write the density of the nucleus using the above values,
$\rho = \dfrac{m}{V} = \dfrac{{1.67 \times {{10}^{ - 27}}A}}{{\dfrac{4}{3}\pi R_0^3A}}$
$A$ will get cancelled and we substitute the value of ${R_0}$, we get
$\rho = \dfrac{{3 \times 1.67 \times {{10}^{ - 27}}}}{{4 \times 3.14 \times {{\left( {1.4 \times {{10}^{ - 15}}} \right)}^3}}} = 1.453 \times {10^{17}}$
The density of the nucleus will be $1.453 \times {10^{17}}kg/{m^3}$.
The answer is:
Option (D): $1.453 \times {10^{17}}kg/{m^3}$
Note
The nucleus consists of protons and neutrons, so they are collectively called nucleons. The mass number of an atom is the number of protons and neutrons. The mass of each nucleon is multiplied with the mass number to obtain the total mass of the nucleus.
Formula used:
$\rho = \dfrac{m}{V}$ Where $\rho $stands for the density of the nucleus, $m$ stands for the mass of the nucleus, and $V$ stands for the volume of the nucleus.
Complete Step by step solution
Let $A$ be the number of nucleons in the nucleus.
Mass of each nucleon is given as, $1.67 \times {10^{ - 27}}kg$
Then the mass of the nucleus can be written as,
$m = A \times 1.67 \times {10^{ - 27}}kg$
The radius of a nucleus can be written as,
$R = {R_0}{A^{\dfrac{1}{3}}}$
It is given that, ${R_0} = 1.4 \times {10^{ - 15}}m$
Since the density of the nucleus can be written as $\rho = \dfrac{m}{V}$ we have to find the volume of the nucleus.
The nucleus is assumed to have a spherical shape. Therefore the volume of the nucleus can be written as,
$V = \dfrac{4}{3}\pi {R^3}$
Substituting $R = {R_0}{A^{\dfrac{1}{3}}}$ in the above equation, we get
$V = \dfrac{4}{3}\pi {\left( {{R_0}{A^{\dfrac{1}{3}}}} \right)^3}$
The volume of the nucleus is thus,
$V = \dfrac{4}{3}\pi R_0^3A$
The mass of the nucleus is,
$m = A \times 1.67 \times {10^{ - 27}}kg$
Now, we can write the density of the nucleus using the above values,
$\rho = \dfrac{m}{V} = \dfrac{{1.67 \times {{10}^{ - 27}}A}}{{\dfrac{4}{3}\pi R_0^3A}}$
$A$ will get cancelled and we substitute the value of ${R_0}$, we get
$\rho = \dfrac{{3 \times 1.67 \times {{10}^{ - 27}}}}{{4 \times 3.14 \times {{\left( {1.4 \times {{10}^{ - 15}}} \right)}^3}}} = 1.453 \times {10^{17}}$
The density of the nucleus will be $1.453 \times {10^{17}}kg/{m^3}$.
The answer is:
Option (D): $1.453 \times {10^{17}}kg/{m^3}$
Note
The nucleus consists of protons and neutrons, so they are collectively called nucleons. The mass number of an atom is the number of protons and neutrons. The mass of each nucleon is multiplied with the mass number to obtain the total mass of the nucleus.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Chemistry Exam Pattern 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main
