The decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ to ${\text{N}}{{\text{O}}_{\text{2}}}$ is carried out at 280K in chloroform. When equilibrium is reached, 0.2 mol of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ and \[{{2 \times 1}}{{\text{0}}^{{\text{ - 3}}}}\]mol of ${\text{N}}{{\text{O}}_{\text{2}}}$ are present in a 2 litre solution. The equilibrium constant for the below reaction is
\[\]${{\text{N}}_{\text{2}}}{{\text{O}}_{{\text{4(g)}}}} \rightleftharpoons 2{\text{N}}{{\text{O}}_{\text{2}}}_{{\text{(g)}}}$
(A) ${\text{1 x 1}}{{\text{0}}^{{\text{ - 2}}}}$
(B) ${\text{2 x 1}}{{\text{0}}^{{\text{ - 3}}}}$
(C) ${\text{1 x 1}}{{\text{0}}^{{\text{ - 5}}}}$
(D) ${\text{2 x 1}}{{\text{0}}^{{\text{ - 5}}}}$
Answer
Verified
117.9k+ views
Hint: The equilibrium constant for a reaction is defined as the number that expresses the relationship between the amounts of products and reactants present at equilibrium in a reversible chemical reaction at a given temperature.
Complete step by step answer: It is given that the decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ to ${\text{N}}{{\text{O}}_{\text{2}}}$ is carried out
at 280K in chloroform. At equilibrium, number of moles of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ is 0.2 mol and number of moles of ${\text{N}}{{\text{O}}_{\text{2}}}$ is \[{{2 \times 1}}{{\text{0}}^{{\text{ - 3}}}}\]mol. The total volume of the solution is 2 litres.
We can find the concentration of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$&${\text{N}}{{\text{O}}_{\text{2}}}$ by the following formula:
${\text{Concentration = }}\dfrac{{{\text{Number of moles}}}}{{{\text{Volume}}}}$
Concentration can be expressed in moles per litre or mol/L. it is also denoted by M.
The concentration of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ is found by substituting the given values, we get,
$ \Rightarrow {\text{[}}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}{\text{] = }}\dfrac{{0.2{\text{ mol}}}}{{2{\text{ L}}}} = 0.1{\text{ mol/L}}$
The concentration of ${\text{N}}{{\text{O}}_{\text{2}}}$ is found by substituting the given values, we get,
$ \Rightarrow {\text{[N}}{{\text{O}}_{\text{2}}}{\text{] = }}\dfrac{{{{2 \times 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{mol}}}}{{{\text{2 L}}}}{{ = 1 \times 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{ mol/L}}$
The equilibrium constant (K or Keq or KC) is the ratio of the mathematical product of the concentrations of the products of a reaction to the mathematical product of the concentrations of the reactants of the reaction. Each concentration is raised to the power of its coefficient in the balanced chemical equation.
The equilibrium reaction for the decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ to ${\text{N}}{{\text{O}}_{\text{2}}}$ is given as:
${{\text{N}}_{\text{2}}}{{\text{O}}_{{\text{4(g)}}}} \rightleftharpoons 2{\text{N}}{{\text{O}}_{\text{2}}}_{{\text{(g)}}}$
The equilibrium constant, K can be given as
$
{\text{K = }}\dfrac{{{{{\text{[N}}{{\text{O}}_{\text{2}}}{\text{]}}}^{\text{2}}}}}{{{\text{[}}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}{\text{]}}}} \\
\Rightarrow {\text{K = }}\dfrac{{{{{{(1 \times 1}}{{\text{0}}^{{\text{ - 3}}}})}^2}}}{{{\text{0}}{\text{.1}}}} \\
\Rightarrow {\text{K = }}\dfrac{{{{1 \times 1}}{{\text{0}}^{{{ - 6}}}}}}{{{\text{0}}{\text{.1}}}} \\
\Rightarrow {{K = 1 \times 1}}{{\text{0}}^{{\text{ - 5}}}} \\
$
The equilibrium constant for the decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ to ${\text{N}}{{\text{O}}_{\text{2}}}$ is ${{1 \times 1}}{{\text{0}}^{{\text{ - 5}}}}$
So, the correct option is C.
Note: Equilibrium constant has no unit since it is the ratio of two concentrations, namely products and reactants respectively. The equilibrium constant can help us understand whether the reaction tends to have a higher concentration of products or reactants at equilibrium.
Complete step by step answer: It is given that the decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ to ${\text{N}}{{\text{O}}_{\text{2}}}$ is carried out
at 280K in chloroform. At equilibrium, number of moles of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ is 0.2 mol and number of moles of ${\text{N}}{{\text{O}}_{\text{2}}}$ is \[{{2 \times 1}}{{\text{0}}^{{\text{ - 3}}}}\]mol. The total volume of the solution is 2 litres.
We can find the concentration of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$&${\text{N}}{{\text{O}}_{\text{2}}}$ by the following formula:
${\text{Concentration = }}\dfrac{{{\text{Number of moles}}}}{{{\text{Volume}}}}$
Concentration can be expressed in moles per litre or mol/L. it is also denoted by M.
The concentration of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ is found by substituting the given values, we get,
$ \Rightarrow {\text{[}}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}{\text{] = }}\dfrac{{0.2{\text{ mol}}}}{{2{\text{ L}}}} = 0.1{\text{ mol/L}}$
The concentration of ${\text{N}}{{\text{O}}_{\text{2}}}$ is found by substituting the given values, we get,
$ \Rightarrow {\text{[N}}{{\text{O}}_{\text{2}}}{\text{] = }}\dfrac{{{{2 \times 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{mol}}}}{{{\text{2 L}}}}{{ = 1 \times 1}}{{\text{0}}^{{\text{ - 3}}}}{\text{ mol/L}}$
The equilibrium constant (K or Keq or KC) is the ratio of the mathematical product of the concentrations of the products of a reaction to the mathematical product of the concentrations of the reactants of the reaction. Each concentration is raised to the power of its coefficient in the balanced chemical equation.
The equilibrium reaction for the decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ to ${\text{N}}{{\text{O}}_{\text{2}}}$ is given as:
${{\text{N}}_{\text{2}}}{{\text{O}}_{{\text{4(g)}}}} \rightleftharpoons 2{\text{N}}{{\text{O}}_{\text{2}}}_{{\text{(g)}}}$
The equilibrium constant, K can be given as
$
{\text{K = }}\dfrac{{{{{\text{[N}}{{\text{O}}_{\text{2}}}{\text{]}}}^{\text{2}}}}}{{{\text{[}}{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}{\text{]}}}} \\
\Rightarrow {\text{K = }}\dfrac{{{{{{(1 \times 1}}{{\text{0}}^{{\text{ - 3}}}})}^2}}}{{{\text{0}}{\text{.1}}}} \\
\Rightarrow {\text{K = }}\dfrac{{{{1 \times 1}}{{\text{0}}^{{{ - 6}}}}}}{{{\text{0}}{\text{.1}}}} \\
\Rightarrow {{K = 1 \times 1}}{{\text{0}}^{{\text{ - 5}}}} \\
$
The equilibrium constant for the decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}$ to ${\text{N}}{{\text{O}}_{\text{2}}}$ is ${{1 \times 1}}{{\text{0}}^{{\text{ - 5}}}}$
So, the correct option is C.
Note: Equilibrium constant has no unit since it is the ratio of two concentrations, namely products and reactants respectively. The equilibrium constant can help us understand whether the reaction tends to have a higher concentration of products or reactants at equilibrium.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry In Hindi Chapter 7 Equilibrium
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Aqueous solution of HNO3 KOH CH3COOH CH3COONa of identical class 11 chemistry JEE_Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main