
The decay constant of radioactive substances is \[4.33 \times {10^{ - 4}}\] per year. Calculate its half life period.
Answer
123.9k+ views
Hint Radioactive decay is a process in which spontaneous breakdown of an atomic nucleus of a radioactive substance occurs which results in the emission of radiation from the nucleus.
Half-Life is basically the time needed by a radioactive substance (or one half the atoms) to disintegrate or decay into another substance.
It is given by ${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{\ell n2}}{\lambda }$ where $\lambda $ is the decay constant of the radioactive substance.
Complete step by step answer Let us first discuss the process of radioactive decay.
Radioactive decay is a process in which spontaneous breakdown of an atomic nucleus of a radioactive substance occurs which results in the emission of radiation from the nucleus. The radioactive nucleus which undergoes decay in a radioactive process is known as parent nucleus and this parent nucleus produces a daughter nucleus in the radioactive process. It is given by the formula
$N = {N_0}{e^{ - \lambda T}}$ where ${N_0}$ is the initial amount of the radioactive substance, $N$ is the amount of that substance remains after time $T$ and $\lambda $ is the decay constant of the radioactive substance.
Now, Half-Life is basically the time needed by a radioactive substance (or one half the atoms) to disintegrate or decay into another substance.
So, if we put $N = \dfrac{{{N_0}}}{2}$ in the above equation of radioactive decay, we will get the expression for half life period. Therefore we get
${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{\ell n2}}{\lambda }$
Now, according to the question, decay constant of radioactive substance is given as \[\lambda = 4.33 \times {10^{ - 4}}{\text{ per year}}\] . So, substituting this value in the above equation we have
${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{0.693}}{{4.33 \times {{10}^{ - 4}}}} = 1.6 \times {10^3}{\text{ years}}$
Hence, half life period of the substance is $1.6 \times {10^3}{\text{ years}}$ .
Note The radioactive decay is a random process, i.e. we are not able to predict the decay of individual atoms. Radioactive isotopes normally decay to harmless substances. Some isotopes decay in hours or even minutes but others decay very slowly and some decay in years.
The principle of the half-life period was first discovered by Ernest Rutherford in 1907.
Half-Life is basically the time needed by a radioactive substance (or one half the atoms) to disintegrate or decay into another substance.
It is given by ${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{\ell n2}}{\lambda }$ where $\lambda $ is the decay constant of the radioactive substance.
Complete step by step answer Let us first discuss the process of radioactive decay.
Radioactive decay is a process in which spontaneous breakdown of an atomic nucleus of a radioactive substance occurs which results in the emission of radiation from the nucleus. The radioactive nucleus which undergoes decay in a radioactive process is known as parent nucleus and this parent nucleus produces a daughter nucleus in the radioactive process. It is given by the formula
$N = {N_0}{e^{ - \lambda T}}$ where ${N_0}$ is the initial amount of the radioactive substance, $N$ is the amount of that substance remains after time $T$ and $\lambda $ is the decay constant of the radioactive substance.
Now, Half-Life is basically the time needed by a radioactive substance (or one half the atoms) to disintegrate or decay into another substance.
So, if we put $N = \dfrac{{{N_0}}}{2}$ in the above equation of radioactive decay, we will get the expression for half life period. Therefore we get
${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{\ell n2}}{\lambda }$
Now, according to the question, decay constant of radioactive substance is given as \[\lambda = 4.33 \times {10^{ - 4}}{\text{ per year}}\] . So, substituting this value in the above equation we have
${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{0.693}}{{4.33 \times {{10}^{ - 4}}}} = 1.6 \times {10^3}{\text{ years}}$
Hence, half life period of the substance is $1.6 \times {10^3}{\text{ years}}$ .
Note The radioactive decay is a random process, i.e. we are not able to predict the decay of individual atoms. Radioactive isotopes normally decay to harmless substances. Some isotopes decay in hours or even minutes but others decay very slowly and some decay in years.
The principle of the half-life period was first discovered by Ernest Rutherford in 1907.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
