The critical velocity of a satellite is inversely proportional to the square root of the_______
but it is independent of mass of____________
(A) radius of the orbit, the satellite
(B) mass of the earth, the satellite
(C) mass of the satellite, the earth
(D) radius of the earth, the earth
Answer
Verified
117.9k+ views
Hint To answer this question, we need to use the expression of the critical velocity. Then we have to manipulate that expression in terms of the quantities mentioned in the options.
Formula Used The formulae used to solve this question are
${v_c} = \sqrt {g({R_e} + h)} $
$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
${v_c}$ is the critical velocity of a satellite, ${R_e}$ is the radius of earth, ${M_e}$is the mass of the earth,$h$ is the height of the satellite above the earth.
Complete step-by-step answer
We know that the critical velocity of a satellite revolving around the earth is given by
${v_c} = \sqrt {g({R_e} + h)} $
We know that$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
Substituting this in the above equation, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}\left( {{R_e} + h} \right)} $
On simplifying, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{\left( {{R_e} + h} \right)}}} $
As we can see from the above expression for the critical velocity of a satellite, that it is directly proportional to the square root of the mass of the earth. So, this means that the critical velocity is not independent of the mass of the earth.
So, options C and D are incorrect.
Also, from the above expression we can see that the critical velocity of the satellite is inversely proportional to the square root of the radius of the orbit. And there is no term containing the mass of the satellite in the right hand side of the above expression. Therefore, the critical velocity is independent of the mass of the satellite.
Hence, the correct answer is option A.
Note: You might be wondering why the mass of the satellite is not there in the final expression of the critical velocity. The answer to this question comes from the derivation of the critical velocity. We know that the critical velocity is the minimum horizontal velocity given to a satellite to keep it revolving in the earth’s orbit. So, it is obtained by keeping the gravitational force of the earth on the satellite equal to the centripetal force required to keep it moving in the earth’s orbit. Since, both the forces are proportional to the mass of the satellite, so it gets cancelled out of the final expression of the critical velocity.
Formula Used The formulae used to solve this question are
${v_c} = \sqrt {g({R_e} + h)} $
$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
${v_c}$ is the critical velocity of a satellite, ${R_e}$ is the radius of earth, ${M_e}$is the mass of the earth,$h$ is the height of the satellite above the earth.
Complete step-by-step answer
We know that the critical velocity of a satellite revolving around the earth is given by
${v_c} = \sqrt {g({R_e} + h)} $
We know that$g = \dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}$
Substituting this in the above equation, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{{{\left( {{R_e} + h} \right)}^2}}}\left( {{R_e} + h} \right)} $
On simplifying, we get
${v_c} = \sqrt {\dfrac{{G{M_e}}}{{\left( {{R_e} + h} \right)}}} $
As we can see from the above expression for the critical velocity of a satellite, that it is directly proportional to the square root of the mass of the earth. So, this means that the critical velocity is not independent of the mass of the earth.
So, options C and D are incorrect.
Also, from the above expression we can see that the critical velocity of the satellite is inversely proportional to the square root of the radius of the orbit. And there is no term containing the mass of the satellite in the right hand side of the above expression. Therefore, the critical velocity is independent of the mass of the satellite.
Hence, the correct answer is option A.
Note: You might be wondering why the mass of the satellite is not there in the final expression of the critical velocity. The answer to this question comes from the derivation of the critical velocity. We know that the critical velocity is the minimum horizontal velocity given to a satellite to keep it revolving in the earth’s orbit. So, it is obtained by keeping the gravitational force of the earth on the satellite equal to the centripetal force required to keep it moving in the earth’s orbit. Since, both the forces are proportional to the mass of the satellite, so it gets cancelled out of the final expression of the critical velocity.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main