
The correct order towards bond angle is
A) \[sp < s{p^2} < s{p^3}\]
B) \[s{p^2} < sp < s{p^3}\]
C) \[s{p^3} < s{p^2} < sp\]
D) Bond angle does not depend on hybridization
Answer
163.8k+ views
Hint: The bond angle is dependent on the hybridization of the centrally placed atom. Here, we will first discuss \[sp,s{p^2}\]and \[s{p^3}\]hybridization first and then try to understand the bond angle of each other hybridization.
Complete step by step solution:The \[sp\] hybridized molecules are those that have two electron groups surrounding the centrally placed atom. For example, the carbon dioxide molecule is \[sp\] hybridized because two oxygen atoms surround the Carbon atom. And the bond angle in a \[sp\]hybridized molecule is \[180^\circ \] .
The \[s{p^2}\]hybridized molecules are those that have three electron groups surrounding the centrally placed atom. For example, the \[{\rm{B}}{{\rm{F}}_3}\] molecule is \[s{p^2}\] hybridized because three fluorine atoms surround the centrally placed boron atom. And the bond angle observed in a\[s{p^2}\]hybridized molecule is \[120^\circ \] .
Let's discuss the \[s{p^3}\]hybridization in detail. In this type of molecule, four electron groups surround the centrally placed atom. For example, in the methane (\[{\rm{C}}{{\rm{H}}_{\rm{4}}}\] ) molecule, four hydrogen surrounds the centrally place carbon atom. And the bond angle observed in this type of molecule is \[109^\circ 28'\] .
Therefore, the increasing order of their bond angle is \[s{p^3} < s{p^2} < sp\].
Hence, option C is right
Note: It is to be noted that, according to the VSEPR theory, an \[sp\]hybridized molecule has a linear shape. The shape acquired by a \[s{p^2}\]hybridized molecule is trigonal planar and the shape of a \[s{p^3}\]hybridized molecule is tetrahedral. The presence of lone pairs in these molecules changes the shapes of these molecules.
Complete step by step solution:The \[sp\] hybridized molecules are those that have two electron groups surrounding the centrally placed atom. For example, the carbon dioxide molecule is \[sp\] hybridized because two oxygen atoms surround the Carbon atom. And the bond angle in a \[sp\]hybridized molecule is \[180^\circ \] .
The \[s{p^2}\]hybridized molecules are those that have three electron groups surrounding the centrally placed atom. For example, the \[{\rm{B}}{{\rm{F}}_3}\] molecule is \[s{p^2}\] hybridized because three fluorine atoms surround the centrally placed boron atom. And the bond angle observed in a\[s{p^2}\]hybridized molecule is \[120^\circ \] .
Let's discuss the \[s{p^3}\]hybridization in detail. In this type of molecule, four electron groups surround the centrally placed atom. For example, in the methane (\[{\rm{C}}{{\rm{H}}_{\rm{4}}}\] ) molecule, four hydrogen surrounds the centrally place carbon atom. And the bond angle observed in this type of molecule is \[109^\circ 28'\] .
Therefore, the increasing order of their bond angle is \[s{p^3} < s{p^2} < sp\].
Hence, option C is right
Note: It is to be noted that, according to the VSEPR theory, an \[sp\]hybridized molecule has a linear shape. The shape acquired by a \[s{p^2}\]hybridized molecule is trigonal planar and the shape of a \[s{p^3}\]hybridized molecule is tetrahedral. The presence of lone pairs in these molecules changes the shapes of these molecules.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Instantaneous Velocity - Formula based Examples for JEE

Thermodynamics Class 11 Notes: CBSE Chapter 5
