![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The correct curve between admittance (Y) and frequency (f) in an anti-resonant circuit will be
A)
![](https://www.vedantu.com/question-sets/45dba478-d4bd-4ad6-bbaa-e3358fb088005747364226334091904.png)
B)
![](https://www.vedantu.com/question-sets/84283a03-0803-4ffe-917b-73e3e8c401765340192807720490919.png)
C)
![](https://www.vedantu.com/question-sets/0d741cf5-707a-4cc9-b059-8d4b391a3c5d5956347434960567053.png)
D)
![](https://www.vedantu.com/question-sets/c6c7bf57-3afa-48ad-969e-c13b847c88cf5768863161042785525.png)
Answer
117.6k+ views
Hint: Let us discuss in brief about an anti-resonant circuit. A parallel circuit containing a resistor, an inductor and a capacitor will produce an anti-resonance circuit (also called parallel resonance circuit) if the net current through the combination is in phase with the voltage. The remarkable point is that at resonance, the anti-resonant circuit produces the same equation as for the series resonance circuit.
Formula Used:
\[Y=\dfrac{1}{Z}\] , \[Z=\dfrac{V}{I}\]
Complete step by step solution:
In the hint section, we mentioned that the formula for the anti-resonant circuit is the same as that for a series resonance circuit. As such, it should make no difference if the inductor or capacitor are connected in parallel or series. But that is not the case.
In the anti-resonant circuit, the reactance (which is the resistance due to capacitor and inductor) of the circuit is maximum. If the impedance of a circuit is at its maximum, then consequently, the admittance must be at its minimum. The relation between admittance and impedance can be given as \[Y=\dfrac{1}{Z}\] where \[Y\] is the admittance and \[Z\] is the impedance. The current and the impedance can be related as \[Z=\dfrac{V}{I}\] where \[V\] denotes the voltage and \[I\] denotes the current. The admittance can hence be written as \[Y=\dfrac{I}{V}\] . Thus, if the reactance of the circuit is at maximum, it implies that the current in the circuit will be at a minimum.
Among the options given above, option (A) is the only option that depicts admittance attaining a minimum value.
Therefore, option (A) is the correct answer.
Note: In contrast to the series resonance circuit, the resistor in an anti-resonant circuit has a damping effect on the circuit bandwidth. Also, since the current is constant for any value of impedance, the waveform of the voltage for an anti-resonant circuit will have the same shape as that of the total impedance.
Formula Used:
\[Y=\dfrac{1}{Z}\] , \[Z=\dfrac{V}{I}\]
Complete step by step solution:
In the hint section, we mentioned that the formula for the anti-resonant circuit is the same as that for a series resonance circuit. As such, it should make no difference if the inductor or capacitor are connected in parallel or series. But that is not the case.
In the anti-resonant circuit, the reactance (which is the resistance due to capacitor and inductor) of the circuit is maximum. If the impedance of a circuit is at its maximum, then consequently, the admittance must be at its minimum. The relation between admittance and impedance can be given as \[Y=\dfrac{1}{Z}\] where \[Y\] is the admittance and \[Z\] is the impedance. The current and the impedance can be related as \[Z=\dfrac{V}{I}\] where \[V\] denotes the voltage and \[I\] denotes the current. The admittance can hence be written as \[Y=\dfrac{I}{V}\] . Thus, if the reactance of the circuit is at maximum, it implies that the current in the circuit will be at a minimum.
Among the options given above, option (A) is the only option that depicts admittance attaining a minimum value.
Therefore, option (A) is the correct answer.
Note: In contrast to the series resonance circuit, the resistor in an anti-resonant circuit has a damping effect on the circuit bandwidth. Also, since the current is constant for any value of impedance, the waveform of the voltage for an anti-resonant circuit will have the same shape as that of the total impedance.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How to find Oxidation Number - Important Concepts for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How Electromagnetic Waves are Formed - Important Concepts for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electrical Resistance - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Average Atomic Mass - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Chemistry Question Paper with Answer Keys and Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Charging and Discharging of Capacitor
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Physics Average Value and RMS Value JEE Main 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)