
The conversion of atomic hydrogen into ordinary hydrogen is
A. Exothermic change
B. Endothermic change
C. Nuclear change
D. Photochemical change
Answer
220.8k+ views
Hint: Atomic hydrogen is transformed into common hydrogen through an exothermic process. Since hydrogen molecules are extremely stable and hydrogen atoms are relatively unstable, they join easily to produce hydrogen molecules, which are highly stable and release energy.
Complete Step by Step Answer:
The hydrogen that exists alone is active hydrogen. It is an atomic hydrogen that only exists as a single hydrogen atom, not as a hydrogen molecule. It has a strong tendency to react. Additionally, it is known as "active hydrogen" due to its high level of reactivity.
Ordinary hydrogen means the molecular hydrogen, it’s been called so because the hydrogen molecule exists in a diatomic state and it’s the most common state in which the hydrogen gas is present.
An exothermic process occurs when atomic hydrogen is transformed into regular hydrogen. Atomic hydrogens are extremely unstable and have surplus energy; as a result, when they unite to create a stable molecule with low energy, the extra energy is released as heat. This makes the reaction exothermic.
\[2H\to {{H}_{2}};\Delta H=104.5kcal\]
Hence, the correct option is A. Exothermic change
Additional information: Exothermic reactions are chemical in nature and are distinguished by the release of energy in the form of heat or light. One instance of this kind of reaction, when the release is in the form of both heat and light, is lighting a match. The exothermic reaction results in the release of energy as opposed to an endothermic reaction, which absorbs energy. This energy frequently exceeds the sum of the energies of the reactants. In the matchstick example from above, the flame that results from a match produces more energy than the matchstick's potential energy.
Note: When formulating the chemical equation for an endothermic reaction, the energy is written on the reactant side and the enthalpy change for the reaction is positive. The exothermic process has a negative change in enthalpy. For an exothermic process, the energy is recorded on the product side. The thermodynamic word for measuring energy is enthalpy.
Complete Step by Step Answer:
The hydrogen that exists alone is active hydrogen. It is an atomic hydrogen that only exists as a single hydrogen atom, not as a hydrogen molecule. It has a strong tendency to react. Additionally, it is known as "active hydrogen" due to its high level of reactivity.
Ordinary hydrogen means the molecular hydrogen, it’s been called so because the hydrogen molecule exists in a diatomic state and it’s the most common state in which the hydrogen gas is present.
An exothermic process occurs when atomic hydrogen is transformed into regular hydrogen. Atomic hydrogens are extremely unstable and have surplus energy; as a result, when they unite to create a stable molecule with low energy, the extra energy is released as heat. This makes the reaction exothermic.
\[2H\to {{H}_{2}};\Delta H=104.5kcal\]
Hence, the correct option is A. Exothermic change
Additional information: Exothermic reactions are chemical in nature and are distinguished by the release of energy in the form of heat or light. One instance of this kind of reaction, when the release is in the form of both heat and light, is lighting a match. The exothermic reaction results in the release of energy as opposed to an endothermic reaction, which absorbs energy. This energy frequently exceeds the sum of the energies of the reactants. In the matchstick example from above, the flame that results from a match produces more energy than the matchstick's potential energy.
Note: When formulating the chemical equation for an endothermic reaction, the energy is written on the reactant side and the enthalpy change for the reaction is positive. The exothermic process has a negative change in enthalpy. For an exothermic process, the energy is recorded on the product side. The thermodynamic word for measuring energy is enthalpy.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Understanding How a Current Loop Acts as a Magnetic Dipole

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Common Ion Effect: Concept, Applications, and Problem-Solving

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

