
What will be the conductivity of pure silicon crystal at $300K$ temperature? If electron hole pairs per \[c{m^3}\] is \[1.072 \times {10^{10}}\] at this temperature, \[{\mu _n} = 1350c{m^2}/volt.\operatorname{s} \] and \[{\mu _n} = 480c{m^2}/volt.\operatorname{s} \]
A) \[3.14 \times {10^{ - 6}}mho/cm\]
B) \[3 \times {10^{ - 6}}mho/cm\]
C) \[{10^{ - 6}}mho/cm\]
D) \[{10^6}mho/cm\]
Answer
144.6k+ views
Hint: Pure Silicon and pure Germanium are two main examples of semiconductors. In which electron hole pairs are in the same concentration. If we add some impurity to the pure semiconductor, the conductivity is increased by time. These impurities are of trivalent and pentavalent elements.
Formula used:
The conductivity of semiconductor is given by
\[\sigma = {N_n}{\mu _n}\]
Where \[\sigma \] is conductivity, \[{N_n}\] is the number of electrons/holes and \[{\mu _n}\] is the mobility.
And when electron hole pairs show conductivity that depends only on the impurity added.
\[\sigma = {N_n}e{\mu _n} + {N_h}e{\mu _h}\]
Where \[e\] is the charge on both electrons and holes. \[{\mu _n}\] and \[{\mu _h}\] are the mobility of electrons and holes respectively.
Complete step by step solution:
The conductivity of semiconductors increases with the mobility of charge carriers. So we only consider mobility and number of charge carriers not on the temperature. Now according to the question, we have temperature \[T = 300K\], number of electrons/holes \[ =
{N_n} = {N_h} = 1.072 \times {10^{10}}\], mobility of electrons \[{\mu _n} =
1350c{m^2}/volt.\operatorname{s} \], mobility of holes \[{\mu _h} =
480c{m^2}/volt.\operatorname{s} \]. We have to find the conductivity \[\sigma \] of pure silicon crystal.
Now we know that, the conductivity of any semiconductor is –
\[\Rightarrow \sigma = {N_n}e{\mu _n} + {N_h}e{\mu _h}\]
We know that \[{N_n} = {N_h} = N\]
So, substituting these values in the above equation. We get-
\[
\Rightarrow \sigma = Ne({\mu _n} + {\mu _h}) \\
\Rightarrow \sigma = 1.072 \times {10^{10}} \times 1.6 \times {10^{ - 19}}\left( {1350 + 480} \right) \\
\Rightarrow \sigma = 1.072 \times {10^{10}} \times 1.6 \times {10^{ - 19}}\left( {1830} \right) \\
\Rightarrow \sigma = 1.072 \times {10^{10}} \times 1.6 \times {10^{ - 19}} \times 1830 \\
\Rightarrow \sigma = 1.072 \times 1.6 \times 1830 \times {10^{ - 9}} \\
\Rightarrow \sigma = 1.072 \times 1.6 \times 1830 \times {10^{ - 9}} \\
\Rightarrow \sigma = 1.7152 \times 1830 \times {10^{ - 9}} \\
\Rightarrow \sigma = 3138.816 \times {10^{ - 9}} \\
\Rightarrow \sigma = 3.138816 \times {10^{ - 6}} \\
\Rightarrow \sigma = 3.14 \times {10^{ - 6}}mho/cm
\]
Hence the conductivity of pure silicon at room temperature is \[\sigma = 3.14 \times {10^{ - 6}}mho/cm\].
Thus, Option A is correct.
Additional information:
Semiconductor is the device that is used in electric appliances. There are two types of semiconductor.
i) n-type semiconductor
ii) P-type semiconductor
n-type semiconductor can make by the doping of impurity of pentavalent element i.e.
(Phosphorous). and p-type semiconductor can make by the doping of impurity of trivalent element
i.e. (Boron). If impurity is added to the pure semiconductors then it is called doped. And this process is called doping. The main motive of adding impurities is increasing the conductivity of pure semiconductors.
Note: The electron and hole concentration is equal in any pure semiconductor. It can be increased sixteen times by adding impurity. By which electron and hole concentration is increased, depends on impurity added. If the impurity added is pentavalent, the free electron in the semiconductor increases. And if the impurity is of trivalent element, holes in the semiconductor increased. And the most important thing is that the conductivity of a semiconductor is increased with the increase of temperature. And $300K$ is considered as room temperature for a semiconductor.
Formula used:
The conductivity of semiconductor is given by
\[\sigma = {N_n}{\mu _n}\]
Where \[\sigma \] is conductivity, \[{N_n}\] is the number of electrons/holes and \[{\mu _n}\] is the mobility.
And when electron hole pairs show conductivity that depends only on the impurity added.
\[\sigma = {N_n}e{\mu _n} + {N_h}e{\mu _h}\]
Where \[e\] is the charge on both electrons and holes. \[{\mu _n}\] and \[{\mu _h}\] are the mobility of electrons and holes respectively.
Complete step by step solution:
The conductivity of semiconductors increases with the mobility of charge carriers. So we only consider mobility and number of charge carriers not on the temperature. Now according to the question, we have temperature \[T = 300K\], number of electrons/holes \[ =
{N_n} = {N_h} = 1.072 \times {10^{10}}\], mobility of electrons \[{\mu _n} =
1350c{m^2}/volt.\operatorname{s} \], mobility of holes \[{\mu _h} =
480c{m^2}/volt.\operatorname{s} \]. We have to find the conductivity \[\sigma \] of pure silicon crystal.
Now we know that, the conductivity of any semiconductor is –
\[\Rightarrow \sigma = {N_n}e{\mu _n} + {N_h}e{\mu _h}\]
We know that \[{N_n} = {N_h} = N\]
So, substituting these values in the above equation. We get-
\[
\Rightarrow \sigma = Ne({\mu _n} + {\mu _h}) \\
\Rightarrow \sigma = 1.072 \times {10^{10}} \times 1.6 \times {10^{ - 19}}\left( {1350 + 480} \right) \\
\Rightarrow \sigma = 1.072 \times {10^{10}} \times 1.6 \times {10^{ - 19}}\left( {1830} \right) \\
\Rightarrow \sigma = 1.072 \times {10^{10}} \times 1.6 \times {10^{ - 19}} \times 1830 \\
\Rightarrow \sigma = 1.072 \times 1.6 \times 1830 \times {10^{ - 9}} \\
\Rightarrow \sigma = 1.072 \times 1.6 \times 1830 \times {10^{ - 9}} \\
\Rightarrow \sigma = 1.7152 \times 1830 \times {10^{ - 9}} \\
\Rightarrow \sigma = 3138.816 \times {10^{ - 9}} \\
\Rightarrow \sigma = 3.138816 \times {10^{ - 6}} \\
\Rightarrow \sigma = 3.14 \times {10^{ - 6}}mho/cm
\]
Hence the conductivity of pure silicon at room temperature is \[\sigma = 3.14 \times {10^{ - 6}}mho/cm\].
Thus, Option A is correct.
Additional information:
Semiconductor is the device that is used in electric appliances. There are two types of semiconductor.
i) n-type semiconductor
ii) P-type semiconductor
n-type semiconductor can make by the doping of impurity of pentavalent element i.e.
(Phosphorous). and p-type semiconductor can make by the doping of impurity of trivalent element
i.e. (Boron). If impurity is added to the pure semiconductors then it is called doped. And this process is called doping. The main motive of adding impurities is increasing the conductivity of pure semiconductors.
Note: The electron and hole concentration is equal in any pure semiconductor. It can be increased sixteen times by adding impurity. By which electron and hole concentration is increased, depends on impurity added. If the impurity added is pentavalent, the free electron in the semiconductor increases. And if the impurity is of trivalent element, holes in the semiconductor increased. And the most important thing is that the conductivity of a semiconductor is increased with the increase of temperature. And $300K$ is considered as room temperature for a semiconductor.
Recently Updated Pages
Difference Between Rows and Columns: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
