
The conductivity of a super conductor is:
A) Zero
B) Infinity
C) Depends on temperature
D) Depends on free electron
Answer
219.9k+ views
Hint: Superconductors are the conductors which are having its resistance value as zero and thus zero resistivity. As the resistance is zero efficiency will be a hundred percentage. Super conductivity can be achieved only in certain conditions
Complete step by step solution:
From free electron theory of metals we know that, when the temperature of a perfect metal decreased, the electron scattering of ions (or atoms) and thermal vibrations will also be decreased and hence the electrical resistance of the substance decreases.
That is, when the temperature is decreased to zero Kelvin temperature, the resistivity may reduce to zero. Based on this principle, many experiments were conducted on many substances. In 1911, Kamerlingh Onnes found that the resistance of pure mercury disappears suddenly at$4.2K$. This temperature is known as pure mercury’s superconducting transition temperature.
We know most of the material possesses a normal condition of resistance on the temperature that is above the superconducting transition temperature, and it can be referred to as the normal state. When the temperature becomes below the superconducting transition temperature, the resistance of the material becomes zero and because of this, its conductivity reaches infinity.
This state of the material is known as a superconducting state. So, the superconducting transition temperature is defined as the temperature at which a material changes its conducting state from normal state to superconducting state and total disappearance of electrical resistance of the substances is called superconductivity. The materials which show this property of superconductivity are called the superconductors.
Final answer is option (B), Infinity.
Note: The state of superconductivity can’t be achieved in normal cases. Thus there will be always power loss in transmission of electricity through the normal conductors. In recent years, no materials with significantly higher critical temperatures have been found.
Complete step by step solution:
From free electron theory of metals we know that, when the temperature of a perfect metal decreased, the electron scattering of ions (or atoms) and thermal vibrations will also be decreased and hence the electrical resistance of the substance decreases.
That is, when the temperature is decreased to zero Kelvin temperature, the resistivity may reduce to zero. Based on this principle, many experiments were conducted on many substances. In 1911, Kamerlingh Onnes found that the resistance of pure mercury disappears suddenly at$4.2K$. This temperature is known as pure mercury’s superconducting transition temperature.
We know most of the material possesses a normal condition of resistance on the temperature that is above the superconducting transition temperature, and it can be referred to as the normal state. When the temperature becomes below the superconducting transition temperature, the resistance of the material becomes zero and because of this, its conductivity reaches infinity.
This state of the material is known as a superconducting state. So, the superconducting transition temperature is defined as the temperature at which a material changes its conducting state from normal state to superconducting state and total disappearance of electrical resistance of the substances is called superconductivity. The materials which show this property of superconductivity are called the superconductors.
Final answer is option (B), Infinity.
Note: The state of superconductivity can’t be achieved in normal cases. Thus there will be always power loss in transmission of electricity through the normal conductors. In recent years, no materials with significantly higher critical temperatures have been found.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

